# machineparameters man page

tclrep/machineparameters — Compute double precision machine parameters.

## Synopsis

`package require `

**snit**

package require **math::machineparameters 0.1****machineparameters** create *objectname* ?*options*...?*objectname* **configure** ?*options*...?*objectname* **cget** *opt**objectname* **destroy***objectname* **compute***objectname* **get** *key**objectname* **tostring***objectname* **print**

## Description

The *math::machineparameters* package is the Tcl equivalent of the DLAMCH LAPACK function. In floating point systems, a floating point number is represented by

`x = +/- d1 d2 ... dt basis^e`

where digits satisfy

`0 <= di <= basis - 1, i = 1, t`

with the convention :

- ·
- t is the size of the mantissa
- ·
- basis is the basis (the "radix")

The **compute** method computes all machine parameters. Then, the **get** method can be used to get each parameter. The **print** method prints a report on standard output.

## Example

In the following example, one compute the parameters of a desktop under Linux with the following Tcl 8.4.19 properties :

```
% parray tcl_platform
tcl_platform(byteOrder) = littleEndian
tcl_platform(machine) = i686
tcl_platform(os) = Linux
tcl_platform(osVersion) = 2.6.24-19-generic
tcl_platform(platform) = unix
tcl_platform(tip,268) = 1
tcl_platform(tip,280) = 1
tcl_platform(user) = <username>
tcl_platform(wordSize) = 4
```

The following example creates a machineparameters object, computes the properties and displays it.

```
set pp [machineparameters create %AUTO%]
$pp compute
$pp print
$pp destroy
```

This prints out :

```
Machine parameters
Epsilon : 1.11022302463e-16
Beta : 2
Rounding : proper
Mantissa : 53
Maximum exponent : 1024
Minimum exponent : -1021
Overflow threshold : 8.98846567431e+307
Underflow threshold : 2.22507385851e-308
```

That compares well with the results produced by Lapack 3.1.1 :

```
Epsilon = 1.11022302462515654E-016
Safe minimum = 2.22507385850720138E-308
Base = 2.0000000000000000
Precision = 2.22044604925031308E-016
Number of digits in mantissa = 53.000000000000000
Rounding mode = 1.00000000000000000
Minimum exponent = -1021.0000000000000
Underflow threshold = 2.22507385850720138E-308
Largest exponent = 1024.0000000000000
Overflow threshold = 1.79769313486231571E+308
Reciprocal of safe minimum = 4.49423283715578977E+307
```

The following example creates a machineparameters object, computes the properties and gets the epsilon for the machine.

```
set pp [machineparameters create %AUTO%]
$pp compute
set eps [$pp get -epsilon]
$pp destroy
```

## References

- ·
- "Algorithms to Reveal Properties of Floating-Point Arithmetic", Michael A. Malcolm, Stanford University, Communications of the ACM, Volume 15 , Issue 11 (November 1972), Pages: 949 - 951
- ·
- "More on Algorithms that Reveal Properties of Floating, Point Arithmetic Units", W. Morven Gentleman, University of Waterloo, Scott B. Marovich, Purdue University, Communications of the ACM, Volume 17 , Issue 5 (May 1974), Pages: 276 - 277

## Class API

**machineparameters**create*objectname*?*options*...?The command creates a new machineparameters object and returns the fully qualified name of the object command as its result.

**-verbose***verbose*- Set this option to 1 to enable verbose logging. This option is mainly for debug purposes. The default value of
*verbose*is 0.

## Object API

*objectname***configure**?*options*...?- The command configure the options of the object
*objectname*. The options are the same as the static method**create**. *objectname***cget***opt*- Returns the value of the option which name is
*opt*. The options are the same as the method**create**and**configure**. *objectname***destroy**- Destroys the object
*objectname*. *objectname***compute**- Computes the machine parameters.
*objectname***get***key*Returns the value corresponding with given key. The following is the list of available keys.

- ·
- -epsilon : smallest value so that 1+epsilon>1 is false
- ·
- -rounding : The rounding mode used on the machine. The rounding occurs when more than t digits would be required to represent the number. Two modes can be determined with the current system : "chop" means than only t digits are kept, no matter the value of the number "proper" means that another rounding mode is used, be it "round to nearest", "round up", "round down".
- ·
- -basis : the basis of the floating-point representation. The basis is usually 2, i.e. binary representation (for example IEEE 754 machines), but some machines (like HP calculators for example) uses 10, or 16, etc...
- ·
- -mantissa : the number of bits in the mantissa
- ·
- -exponentmax : the largest positive exponent before overflow occurs
- ·
- -exponentmin : the largest negative exponent before (gradual) underflow occurs
- ·
- -vmax : largest positive value before overflow occurs
- ·
- -vmin : largest negative value before (gradual) underflow occurs

*objectname***tostring**- Return a report for machine parameters.
*objectname***print**- Print machine parameters on standard output.

## Bugs, Ideas, Feedback

This document, and the package it describes, will undoubtedly contain bugs and other problems. Please report such in the category *math* of the *Tcllib Trackers* [http://core.tcl.tk/tcllib/reportlist]. Please also report any ideas for enhancements you may have for either package and/or documentation.

## Copyright

`Copyright (c) 2008 Michael Baudin <michael.baudin@sourceforge.net>`