expm1 man page
Prolog
This manual page is part of the POSIX Programmer's Manual. The Linux implementation of this interface may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface may not be implemented on Linux.
expm1, expm1f, expm1l — compute exponential functions
Synopsis
#include <math.h> double expm1(double x); float expm1f(float x); long double expm1l(long double x);
Description
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between the requirements described here and the ISO C standard is unintentional. This volume of POSIX.12008 defers to the ISO C standard.
These functions shall compute e^{x}1.0.
An application wishing to check for error situations should set errno to zero and call feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is nonzero or fetestexcept(FE_INVALID  FE_DIVBYZERO  FE_OVERFLOW  FE_UNDERFLOW) is nonzero, an error has occurred.
Return Value
Upon successful completion, these functions return e^{x}1.0.
If the correct value would cause overflow, a range error shall occur and expm1(), expm1f(), and expm1l() shall return the value of the macro HUGE_VAL, HUGE_VALF, and HUGE_VALL, respectively.
If x is NaN, a NaN shall be returned.
If x is ±0, ±0 shall be returned.
If x is Inf, 1 shall be returned.
If x is +Inf, x shall be returned.
If x is subnormal, a range error may occur
and x should be returned.
If x is not returned, expm1(), expm1f(), and expm1l() shall return an implementationdefined value no greater in magnitude than DBL_MIN, FLT_MIN, and LDBL_MIN, respectively.
Errors
These functions shall fail if:
 Range Error

The result overflows.
If the integer expression (math_errhandling & MATH_ERRNO) is nonzero, then errno shall be set to [ERANGE]. If the integer expression (math_errhandling & MATH_ERREXCEPT) is nonzero, then the overflow floatingpoint exception shall be raised.
These functions may fail if:
 Range Error

The value of x is subnormal.
If the integer expression (math_errhandling & MATH_ERRNO) is nonzero, then errno shall be set to [ERANGE]. If the integer expression (math_errhandling & MATH_ERREXCEPT) is nonzero, then the underflow floatingpoint exception shall be raised.
The following sections are informative.
Examples
None.
Application Usage
The value of expm1(x) may be more accurate than exp(x)1.0 for small values of x.
The expm1() and log1p() functions are useful for financial calculations of ((1+x)^{n}1)/x, namely:
expm1(n * log1p(x))/x
when x is very small (for example, when calculating small daily interest rates). These functions also simplify writing accurate inverse hyperbolic functions.
For IEEE Std 7541985 double, 709.8 < x implies expm1(x) has overflowed.
On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling & MATH_ERREXCEPT) are independent of each other, but at least one of them must be nonzero.
Rationale
None.
Future Directions
None.
See Also
exp(), feclearexcept(), fetestexcept(), ilogb(), log1p()
The Base Definitions volume of POSIX.12008, Section 4.19, Treatment of Error Conditions for Mathematical Functions, <math.h>
Copyright
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1, 2013 Edition, Standard for Information Technology  Portable Operating System Interface (POSIX), The Open Group Base Specifications Issue 7, Copyright (C) 2013 by the Institute of Electrical and Electronics Engineers, Inc and The Open Group. (This is POSIX.12008 with the 2013 Technical Corrigendum 1 applied.) In the event of any discrepancy between this version and the original IEEE and The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The original Standard can be obtained online at http://www.unix.org/online.html .
Any typographical or formatting errors that appear in this page are most likely to have been introduced during the conversion of the source files to man page format. To report such errors, see https://www.kernel.org/doc/manpages/reporting_bugs.html .