ztpmlqt.f - Man Page
SRC/ztpmlqt.f
Synopsis
Functions/Subroutines
subroutine ztpmlqt (side, trans, m, n, k, l, mb, v, ldv, t, ldt, a, lda, b, ldb, work, info)
ZTPMLQT
Function/Subroutine Documentation
subroutine ztpmlqt (character side, character trans, integer m, integer n, integer k, integer l, integer mb, complex*16, dimension( ldv, * ) v, integer ldv, complex*16, dimension( ldt, * ) t, integer ldt, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldb, * ) b, integer ldb, complex*16, dimension( * ) work, integer info)
ZTPMLQT
Purpose:
ZTPMLQT applies a complex unitary matrix Q obtained from a 'triangular-pentagonal' complex block reflector H to a general complex matrix C, which consists of two blocks A and B.
- Parameters
SIDE
SIDE is CHARACTER*1 = 'L': apply Q or Q**H from the Left; = 'R': apply Q or Q**H from the Right.
TRANS
TRANS is CHARACTER*1 = 'N': No transpose, apply Q; = 'C': Conjugate transpose, apply Q**H.
M
M is INTEGER The number of rows of the matrix B. M >= 0.
N
N is INTEGER The number of columns of the matrix B. N >= 0.
K
K is INTEGER The number of elementary reflectors whose product defines the matrix Q.
L
L is INTEGER The order of the trapezoidal part of V. K >= L >= 0. See Further Details.
MB
MB is INTEGER The block size used for the storage of T. K >= MB >= 1. This must be the same value of MB used to generate T in ZTPLQT.
V
V is COMPLEX*16 array, dimension (LDV,K) The i-th row must contain the vector which defines the elementary reflector H(i), for i = 1,2,...,k, as returned by ZTPLQT in B. See Further Details.
LDV
LDV is INTEGER The leading dimension of the array V. LDV >= K.
T
T is COMPLEX*16 array, dimension (LDT,K) The upper triangular factors of the block reflectors as returned by ZTPLQT, stored as a MB-by-K matrix.
LDT
LDT is INTEGER The leading dimension of the array T. LDT >= MB.
A
A is COMPLEX*16 array, dimension (LDA,N) if SIDE = 'L' or (LDA,K) if SIDE = 'R' On entry, the K-by-N or M-by-K matrix A. On exit, A is overwritten by the corresponding block of Q*C or Q**H*C or C*Q or C*Q**H. See Further Details.
LDA
LDA is INTEGER The leading dimension of the array A. If SIDE = 'L', LDA >= max(1,K); If SIDE = 'R', LDA >= max(1,M).
B
B is COMPLEX*16 array, dimension (LDB,N) On entry, the M-by-N matrix B. On exit, B is overwritten by the corresponding block of Q*C or Q**H*C or C*Q or C*Q**H. See Further Details.
LDB
LDB is INTEGER The leading dimension of the array B. LDB >= max(1,M).
WORK
WORK is COMPLEX*16 array. The dimension of WORK is N*MB if SIDE = 'L', or M*MB if SIDE = 'R'.
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
The columns of the pentagonal matrix V contain the elementary reflectors H(1), H(2), ..., H(K); V is composed of a rectangular block V1 and a trapezoidal block V2: V = [V1] [V2]. The size of the trapezoidal block V2 is determined by the parameter L, where 0 <= L <= K; V2 is lower trapezoidal, consisting of the first L rows of a K-by-K upper triangular matrix. If L=K, V2 is lower triangular; if L=0, there is no trapezoidal block, hence V = V1 is rectangular. If SIDE = 'L': C = [A] where A is K-by-N, B is M-by-N and V is K-by-M. [B] If SIDE = 'R': C = [A B] where A is M-by-K, B is M-by-N and V is K-by-N. The complex unitary matrix Q is formed from V and T. If TRANS='N' and SIDE='L', C is on exit replaced with Q * C. If TRANS='C' and SIDE='L', C is on exit replaced with Q**H * C. If TRANS='N' and SIDE='R', C is on exit replaced with C * Q. If TRANS='C' and SIDE='R', C is on exit replaced with C * Q**H.
Definition at line 212 of file ztpmlqt.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Referenced By
The man page ztpmlqt(3) is an alias of ztpmlqt.f(3).
Tue Nov 28 2023 12:08:42 Version 3.12.0 LAPACK