ztgsen.f man page

ztgsen.f —

Synopsis

Functions/Subroutines

subroutine ztgsen (IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB, ALPHA, BETA, Q, LDQ, Z, LDZ, M, PL, PR, DIF, WORK, LWORK, IWORK, LIWORK, INFO)
ZTGSEN

Function/Subroutine Documentation

subroutine ztgsen (integerIJOB, logicalWANTQ, logicalWANTZ, logical, dimension( * )SELECT, integerN, complex*16, dimension( lda, * )A, integerLDA, complex*16, dimension( ldb, * )B, integerLDB, complex*16, dimension( * )ALPHA, complex*16, dimension( * )BETA, complex*16, dimension( ldq, * )Q, integerLDQ, complex*16, dimension( ldz, * )Z, integerLDZ, integerM, double precisionPL, double precisionPR, double precision, dimension( * )DIF, complex*16, dimension( * )WORK, integerLWORK, integer, dimension( * )IWORK, integerLIWORK, integerINFO)

ZTGSEN

Purpose:

ZTGSEN reorders the generalized Schur decomposition of a complex
matrix pair (A, B) (in terms of an unitary equivalence trans-
formation Q**H * (A, B) * Z), so that a selected cluster of eigenvalues
appears in the leading diagonal blocks of the pair (A,B). The leading
columns of Q and Z form unitary bases of the corresponding left and
right eigenspaces (deflating subspaces). (A, B) must be in
generalized Schur canonical form, that is, A and B are both upper
triangular.

ZTGSEN also computes the generalized eigenvalues

         w(j)= ALPHA(j) / BETA(j)

of the reordered matrix pair (A, B).

Optionally, the routine computes estimates of reciprocal condition
numbers for eigenvalues and eigenspaces. These are Difu[(A11,B11),
(A22,B22)] and Difl[(A11,B11), (A22,B22)], i.e. the separation(s)
between the matrix pairs (A11, B11) and (A22,B22) that correspond to
the selected cluster and the eigenvalues outside the cluster, resp.,
and norms of "projections" onto left and right eigenspaces w.r.t.
the selected cluster in the (1,1)-block.

Parameters:

IJOB

IJOB is integer
Specifies whether condition numbers are required for the
cluster of eigenvalues (PL and PR) or the deflating subspaces
(Difu and Difl):
 =0: Only reorder w.r.t. SELECT. No extras.
 =1: Reciprocal of norms of "projections" onto left and right
     eigenspaces w.r.t. the selected cluster (PL and PR).
 =2: Upper bounds on Difu and Difl. F-norm-based estimate
     (DIF(1:2)).
 =3: Estimate of Difu and Difl. 1-norm-based estimate
     (DIF(1:2)).
     About 5 times as expensive as IJOB = 2.
 =4: Compute PL, PR and DIF (i.e. 0, 1 and 2 above): Economic
     version to get it all.
 =5: Compute PL, PR and DIF (i.e. 0, 1 and 3 above)

WANTQ

WANTQ is LOGICAL
.TRUE. : update the left transformation matrix Q;
.FALSE.: do not update Q.

WANTZ

WANTZ is LOGICAL
.TRUE. : update the right transformation matrix Z;
.FALSE.: do not update Z.

SELECT

SELECT is LOGICAL array, dimension (N)
SELECT specifies the eigenvalues in the selected cluster. To
select an eigenvalue w(j), SELECT(j) must be set to
.TRUE..

N

N is INTEGER
The order of the matrices A and B. N >= 0.

A

A is COMPLEX*16 array, dimension(LDA,N)
On entry, the upper triangular matrix A, in generalized
Schur canonical form.
On exit, A is overwritten by the reordered matrix A.

LDA

LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

B

B is COMPLEX*16 array, dimension(LDB,N)
On entry, the upper triangular matrix B, in generalized
Schur canonical form.
On exit, B is overwritten by the reordered matrix B.

LDB

LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).

ALPHA

ALPHA is COMPLEX*16 array, dimension (N)

BETA

BETA is COMPLEX*16 array, dimension (N)

The diagonal elements of A and B, respectively,
when the pair (A,B) has been reduced to generalized Schur
form.  ALPHA(i)/BETA(i) i=1,...,N are the generalized
eigenvalues.

Q

Q is COMPLEX*16 array, dimension (LDQ,N)
On entry, if WANTQ = .TRUE., Q is an N-by-N matrix.
On exit, Q has been postmultiplied by the left unitary
transformation matrix which reorder (A, B); The leading M
columns of Q form orthonormal bases for the specified pair of
left eigenspaces (deflating subspaces).
If WANTQ = .FALSE., Q is not referenced.

LDQ

LDQ is INTEGER
The leading dimension of the array Q. LDQ >= 1.
If WANTQ = .TRUE., LDQ >= N.

Z

Z is COMPLEX*16 array, dimension (LDZ,N)
On entry, if WANTZ = .TRUE., Z is an N-by-N matrix.
On exit, Z has been postmultiplied by the left unitary
transformation matrix which reorder (A, B); The leading M
columns of Z form orthonormal bases for the specified pair of
left eigenspaces (deflating subspaces).
If WANTZ = .FALSE., Z is not referenced.

LDZ

LDZ is INTEGER
The leading dimension of the array Z. LDZ >= 1.
If WANTZ = .TRUE., LDZ >= N.

M

M is INTEGER
The dimension of the specified pair of left and right
eigenspaces, (deflating subspaces) 0 <= M <= N.

PL

PL is DOUBLE PRECISION

PR

PR is DOUBLE PRECISION

If IJOB = 1, 4 or 5, PL, PR are lower bounds on the
reciprocal  of the norm of "projections" onto left and right
eigenspace with respect to the selected cluster.
0 < PL, PR <= 1.
If M = 0 or M = N, PL = PR  = 1.
If IJOB = 0, 2 or 3 PL, PR are not referenced.

DIF

DIF is DOUBLE PRECISION array, dimension (2).
If IJOB >= 2, DIF(1:2) store the estimates of Difu and Difl.
If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper bounds on
Difu and Difl. If IJOB = 3 or 5, DIF(1:2) are 1-norm-based
estimates of Difu and Difl, computed using reversed
communication with ZLACN2.
If M = 0 or N, DIF(1:2) = F-norm([A, B]).
If IJOB = 0 or 1, DIF is not referenced.

WORK

WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

LWORK

LWORK is INTEGER
The dimension of the array WORK. LWORK >=  1
If IJOB = 1, 2 or 4, LWORK >=  2*M*(N-M)
If IJOB = 3 or 5, LWORK >=  4*M*(N-M)

If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.

IWORK

IWORK is INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.

LIWORK

LIWORK is INTEGER
The dimension of the array IWORK. LIWORK >= 1.
If IJOB = 1, 2 or 4, LIWORK >=  N+2;
If IJOB = 3 or 5, LIWORK >= MAX(N+2, 2*M*(N-M));

If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the IWORK array,
returns this value as the first entry of the IWORK array, and
no error message related to LIWORK is issued by XERBLA.

INFO

INFO is INTEGER
  =0: Successful exit.
  <0: If INFO = -i, the i-th argument had an illegal value.
  =1: Reordering of (A, B) failed because the transformed
      matrix pair (A, B) would be too far from generalized
      Schur form; the problem is very ill-conditioned.
      (A, B) may have been partially reordered.
      If requested, 0 is returned in DIF(*), PL and PR.

Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

November 2011

Further Details:

ZTGSEN first collects the selected eigenvalues by computing unitary
U and W that move them to the top left corner of (A, B). In other
words, the selected eigenvalues are the eigenvalues of (A11, B11) in

            U**H*(A, B)*W = (A11 A12) (B11 B12) n1
                            ( 0  A22),( 0  B22) n2
                              n1  n2    n1  n2

where N = n1+n2 and U**H means the conjugate transpose of U. The first
n1 columns of U and W span the specified pair of left and right
eigenspaces (deflating subspaces) of (A, B).

If (A, B) has been obtained from the generalized real Schur
decomposition of a matrix pair (C, D) = Q*(A, B)*Z**H, then the
reordered generalized Schur form of (C, D) is given by

         (C, D) = (Q*U)*(U**H *(A, B)*W)*(Z*W)**H,

and the first n1 columns of Q*U and Z*W span the corresponding
deflating subspaces of (C, D) (Q and Z store Q*U and Z*W, resp.).

Note that if the selected eigenvalue is sufficiently ill-conditioned,
then its value may differ significantly from its value before
reordering.

The reciprocal condition numbers of the left and right eigenspaces
spanned by the first n1 columns of U and W (or Q*U and Z*W) may
be returned in DIF(1:2), corresponding to Difu and Difl, resp.

The Difu and Difl are defined as:

     Difu[(A11, B11), (A22, B22)] = sigma-min( Zu )
and
     Difl[(A11, B11), (A22, B22)] = Difu[(A22, B22), (A11, B11)],

where sigma-min(Zu) is the smallest singular value of the
(2*n1*n2)-by-(2*n1*n2) matrix

     Zu = [ kron(In2, A11)  -kron(A22**H, In1) ]
          [ kron(In2, B11)  -kron(B22**H, In1) ].

Here, Inx is the identity matrix of size nx and A22**H is the
conjugate transpose of A22. kron(X, Y) is the Kronecker product between
the matrices X and Y.

When DIF(2) is small, small changes in (A, B) can cause large changes
in the deflating subspace. An approximate (asymptotic) bound on the
maximum angular error in the computed deflating subspaces is

     EPS * norm((A, B)) / DIF(2),

where EPS is the machine precision.

The reciprocal norm of the projectors on the left and right
eigenspaces associated with (A11, B11) may be returned in PL and PR.
They are computed as follows. First we compute L and R so that
P*(A, B)*Q is block diagonal, where

     P = ( I -L ) n1           Q = ( I R ) n1
         ( 0  I ) n2    and        ( 0 I ) n2
           n1 n2                    n1 n2

and (L, R) is the solution to the generalized Sylvester equation

     A11*R - L*A22 = -A12
     B11*R - L*B22 = -B12

Then PL = (F-norm(L)**2+1)**(-1/2) and PR = (F-norm(R)**2+1)**(-1/2).
An approximate (asymptotic) bound on the average absolute error of
the selected eigenvalues is

     EPS * norm((A, B)) / PL.

There are also global error bounds which valid for perturbations up
to a certain restriction:  A lower bound (x) on the smallest
F-norm(E,F) for which an eigenvalue of (A11, B11) may move and
coalesce with an eigenvalue of (A22, B22) under perturbation (E,F),
(i.e. (A + E, B + F), is

 x = min(Difu,Difl)/((1/(PL*PL)+1/(PR*PR))**(1/2)+2*max(1/PL,1/PR)).

An approximate bound on x can be computed from DIF(1:2), PL and PR.

If y = ( F-norm(E,F) / x) <= 1, the angles between the perturbed
(L', R') and unperturbed (L, R) left and right deflating subspaces
associated with the selected cluster in the (1,1)-blocks can be
bounded as

 max-angle(L, L') <= arctan( y * PL / (1 - y * (1 - PL * PL)**(1/2))
 max-angle(R, R') <= arctan( y * PR / (1 - y * (1 - PR * PR)**(1/2))

See LAPACK User's Guide section 4.11 or the following references
for more information.

Note that if the default method for computing the Frobenius-norm-
based estimate DIF is not wanted (see ZLATDF), then the parameter
IDIFJB (see below) should be changed from 3 to 4 (routine ZLATDF
(IJOB = 2 will be used)). See ZTGSYL for more details.

Contributors:

Bo Kagstrom and Peter Poromaa, Department of Computing Science, Umea University, S-901 87 Umea, Sweden.

References:

[1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the Generalized Real Schur Form of a Regular Matrix Pair (A, B), in M.S. Moonen et al (eds), Linear Algebra for Large Scale and Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
[2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified Eigenvalues of a Regular Matrix Pair (A, B) and Condition Estimation: Theory, Algorithms and Software, Report UMINF - 94.04, Department of Computing Science, Umea University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87. To appear in Numerical Algorithms, 1996.
[3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software for Solving the Generalized Sylvester Equation and Estimating the Separation between Regular Matrix Pairs, Report UMINF - 93.23, Department of Computing Science, Umea University, S-901 87 Umea, Sweden, December 1993, Revised April 1994, Also as LAPACK working Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1, 1996.

Definition at line 432 of file ztgsen.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Referenced By

ztgsen(3) is an alias of ztgsen.f(3).

Sat Nov 16 2013 Version 3.4.2 LAPACK