zsysv_rook.f man page

zsysv_rook.f

Synopsis

Functions/Subroutines

subroutine zsysv_rook (UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, LWORK, INFO)
ZSYSV_ROOK computes the solution to system of linear equations A * X = B for SY matrices

Function/Subroutine Documentation

subroutine zsysv_rook (character UPLO, integer N, integer NRHS, complex*16, dimension( lda, * ) A, integer LDA, integer, dimension( * ) IPIV, complex*16, dimension( ldb, * ) B, integer LDB, complex*16, dimension( * ) WORK, integer LWORK, integer INFO)

ZSYSV_ROOK computes the solution to system of linear equations A * X = B for SY matrices  

Purpose:

 ZSYSV_ROOK computes the solution to a complex system of linear
 equations
    A * X = B,
 where A is an N-by-N symmetric matrix and X and B are N-by-NRHS
 matrices.

 The diagonal pivoting method is used to factor A as
    A = U * D * U**T,  if UPLO = 'U', or
    A = L * D * L**T,  if UPLO = 'L',
 where U (or L) is a product of permutation and unit upper (lower)
 triangular matrices, and D is symmetric and block diagonal with
 1-by-1 and 2-by-2 diagonal blocks.

 ZSYTRF_ROOK is called to compute the factorization of a complex
 symmetric matrix A using the bounded Bunch-Kaufman ("rook") diagonal
 pivoting method.

 The factored form of A is then used to solve the system
 of equations A * X = B by calling ZSYTRS_ROOK.
Parameters:

UPLO

          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.

N

          N is INTEGER
          The number of linear equations, i.e., the order of the
          matrix A.  N >= 0.

NRHS

          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrix B.  NRHS >= 0.

A

          A is COMPLEX*16 array, dimension (LDA,N)
          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
          N-by-N upper triangular part of A contains the upper
          triangular part of the matrix A, and the strictly lower
          triangular part of A is not referenced.  If UPLO = 'L', the
          leading N-by-N lower triangular part of A contains the lower
          triangular part of the matrix A, and the strictly upper
          triangular part of A is not referenced.

          On exit, if INFO = 0, the block diagonal matrix D and the
          multipliers used to obtain the factor U or L from the
          factorization A = U*D*U**T or A = L*D*L**T as computed by
          ZSYTRF_ROOK.

LDA

          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).

IPIV

          IPIV is INTEGER array, dimension (N)
          Details of the interchanges and the block structure of D,
          as determined by ZSYTRF_ROOK.

          If UPLO = 'U':
               If IPIV(k) > 0, then rows and columns k and IPIV(k)
               were interchanged and D(k,k) is a 1-by-1 diagonal block.

               If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and
               columns k and -IPIV(k) were interchanged and rows and
               columns k-1 and -IPIV(k-1) were inerchaged,
               D(k-1:k,k-1:k) is a 2-by-2 diagonal block.

          If UPLO = 'L':
               If IPIV(k) > 0, then rows and columns k and IPIV(k)
               were interchanged and D(k,k) is a 1-by-1 diagonal block.

               If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and
               columns k and -IPIV(k) were interchanged and rows and
               columns k+1 and -IPIV(k+1) were inerchaged,
               D(k:k+1,k:k+1) is a 2-by-2 diagonal block.

B

          B is COMPLEX*16 array, dimension (LDB,NRHS)
          On entry, the N-by-NRHS right hand side matrix B.
          On exit, if INFO = 0, the N-by-NRHS solution matrix X.

LDB

          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).

WORK

          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

LWORK

          LWORK is INTEGER
          The length of WORK.  LWORK >= 1, and for best performance
          LWORK >= max(1,N*NB), where NB is the optimal blocksize for
          ZSYTRF_ROOK.

          TRS will be done with Level 2 BLAS

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA.

INFO

          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
          > 0: if INFO = i, D(i,i) is exactly zero.  The factorization
               has been completed, but the block diagonal matrix D is
               exactly singular, so the solution could not be computed.
Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

December 2016

Contributors:

   December 2016, Igor Kozachenko,
                  Computer Science Division,
                  University of California, Berkeley

  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
                  School of Mathematics,
                  University of Manchester

Definition at line 206 of file zsysv_rook.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Referenced By

The man page zsysv_rook(3) is an alias of zsysv_rook.f(3).

Tue Nov 14 2017 Version 3.8.0 LAPACK