zsptrf.f man page

zsptrf.f —

Synopsis

Functions/Subroutines

subroutine zsptrf (UPLO, N, AP, IPIV, INFO)
ZSPTRF

Function/Subroutine Documentation

subroutine zsptrf (characterUPLO, integerN, complex*16, dimension( * )AP, integer, dimension( * )IPIV, integerINFO)

ZSPTRF

Purpose:

ZSPTRF computes the factorization of a complex symmetric matrix A
stored in packed format using the Bunch-Kaufman diagonal pivoting
method:

   A = U*D*U**T  or  A = L*D*L**T

where U (or L) is a product of permutation and unit upper (lower)
triangular matrices, and D is symmetric and block diagonal with
1-by-1 and 2-by-2 diagonal blocks.

Parameters:

UPLO

UPLO is CHARACTER*1
= 'U':  Upper triangle of A is stored;
= 'L':  Lower triangle of A is stored.

N

N is INTEGER
The order of the matrix A.  N >= 0.

AP

AP is COMPLEX*16 array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array.  The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.

On exit, the block diagonal matrix D and the multipliers used
to obtain the factor U or L, stored as a packed triangular
matrix overwriting A (see below for further details).

IPIV

IPIV is INTEGER array, dimension (N)
Details of the interchanges and the block structure of D.
If IPIV(k) > 0, then rows and columns k and IPIV(k) were
interchanged and D(k,k) is a 1-by-1 diagonal block.
If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =
IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.

INFO

INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, D(i,i) is exactly zero.  The factorization
     has been completed, but the block diagonal matrix D is
     exactly singular, and division by zero will occur if it
     is used to solve a system of equations.

Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

November 2011

Further Details:

5-96 - Based on modifications by J. Lewis, Boeing Computer Services
       Company

If UPLO = 'U', then A = U*D*U**T, where
   U = P(n)*U(n)* ... *P(k)U(k)* ...,
i.e., U is a product of terms P(k)*U(k), where k decreases from n to
1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
that if the diagonal block D(k) is of order s (s = 1 or 2), then

           (   I    v    0   )   k-s
   U(k) =  (   0    I    0   )   s
           (   0    0    I   )   n-k
              k-s   s   n-k

If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
and A(k,k), and v overwrites A(1:k-2,k-1:k).

If UPLO = 'L', then A = L*D*L**T, where
   L = P(1)*L(1)* ... *P(k)*L(k)* ...,
i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
that if the diagonal block D(k) is of order s (s = 1 or 2), then

           (   I    0     0   )  k-1
   L(k) =  (   0    I     0   )  s
           (   0    v     I   )  n-k-s+1
              k-1   s  n-k-s+1

If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).

Definition at line 159 of file zsptrf.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Referenced By

zsptrf(3) is an alias of zsptrf.f(3).

Sat Nov 16 2013 Version 3.4.2 LAPACK