zsgt01.f - Man Page
TESTING/EIG/zsgt01.f
Synopsis
Functions/Subroutines
subroutine zsgt01 (itype, uplo, n, m, a, lda, b, ldb, z, ldz, d, work, rwork, result)
ZSGT01
Function/Subroutine Documentation
subroutine zsgt01 (integer itype, character uplo, integer n, integer m, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldb, * ) b, integer ldb, complex*16, dimension( ldz, * ) z, integer ldz, double precision, dimension( * ) d, complex*16, dimension( * ) work, double precision, dimension( * ) rwork, double precision, dimension( * ) result)
ZSGT01
Purpose:
CDGT01 checks a decomposition of the form A Z = B Z D or A B Z = Z D or B A Z = Z D where A is a Hermitian matrix, B is Hermitian positive definite, Z is unitary, and D is diagonal. One of the following test ratios is computed: ITYPE = 1: RESULT(1) = | A Z - B Z D | / ( |A| |Z| n ulp ) ITYPE = 2: RESULT(1) = | A B Z - Z D | / ( |A| |Z| n ulp ) ITYPE = 3: RESULT(1) = | B A Z - Z D | / ( |A| |Z| n ulp )
- Parameters
ITYPE
ITYPE is INTEGER The form of the Hermitian generalized eigenproblem. = 1: A*z = (lambda)*B*z = 2: A*B*z = (lambda)*z = 3: B*A*z = (lambda)*z
UPLO
UPLO is CHARACTER*1 Specifies whether the upper or lower triangular part of the Hermitian matrices A and B is stored. = 'U': Upper triangular = 'L': Lower triangular
N
N is INTEGER The order of the matrix A. N >= 0.
M
M is INTEGER The number of eigenvalues found. M >= 0.
A
A is COMPLEX*16 array, dimension (LDA, N) The original Hermitian matrix A.
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).
B
B is COMPLEX*16 array, dimension (LDB, N) The original Hermitian positive definite matrix B.
LDB
LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).
Z
Z is COMPLEX*16 array, dimension (LDZ, M) The computed eigenvectors of the generalized eigenproblem.
LDZ
LDZ is INTEGER The leading dimension of the array Z. LDZ >= max(1,N).
D
D is DOUBLE PRECISION array, dimension (M) The computed eigenvalues of the generalized eigenproblem.
WORK
WORK is COMPLEX*16 array, dimension (N*N)
RWORK
RWORK is DOUBLE PRECISION array, dimension (N)
RESULT
RESULT is DOUBLE PRECISION array, dimension (1) The test ratio as described above.
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 150 of file zsgt01.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Referenced By
The man page zsgt01(3) is an alias of zsgt01.f(3).
Tue Nov 28 2023 12:08:42 Version 3.12.0 LAPACK