zrqt03.f - Man Page

TESTING/LIN/zrqt03.f

Synopsis

Functions/Subroutines

subroutine zrqt03 (m, n, k, af, c, cc, q, lda, tau, work, lwork, rwork, result)
ZRQT03

Function/Subroutine Documentation

subroutine zrqt03 (integer m, integer n, integer k, complex*16, dimension( lda, * ) af, complex*16, dimension( lda, * ) c, complex*16, dimension( lda, * ) cc, complex*16, dimension( lda, * ) q, integer lda, complex*16, dimension( * ) tau, complex*16, dimension( lwork ) work, integer lwork, double precision, dimension( * ) rwork, double precision, dimension( * ) result)

ZRQT03

Purpose:

 ZRQT03 tests ZUNMRQ, which computes Q*C, Q'*C, C*Q or C*Q'.

 ZRQT03 compares the results of a call to ZUNMRQ with the results of
 forming Q explicitly by a call to ZUNGRQ and then performing matrix
 multiplication by a call to ZGEMM.
Parameters

M

          M is INTEGER
          The number of rows or columns of the matrix C; C is n-by-m if
          Q is applied from the left, or m-by-n if Q is applied from
          the right.  M >= 0.

N

          N is INTEGER
          The order of the orthogonal matrix Q.  N >= 0.

K

          K is INTEGER
          The number of elementary reflectors whose product defines the
          orthogonal matrix Q.  N >= K >= 0.

AF

          AF is COMPLEX*16 array, dimension (LDA,N)
          Details of the RQ factorization of an m-by-n matrix, as
          returned by ZGERQF. See CGERQF for further details.

C

          C is COMPLEX*16 array, dimension (LDA,N)

CC

          CC is COMPLEX*16 array, dimension (LDA,N)

Q

          Q is COMPLEX*16 array, dimension (LDA,N)

LDA

          LDA is INTEGER
          The leading dimension of the arrays AF, C, CC, and Q.

TAU

          TAU is COMPLEX*16 array, dimension (min(M,N))
          The scalar factors of the elementary reflectors corresponding
          to the RQ factorization in AF.

WORK

          WORK is COMPLEX*16 array, dimension (LWORK)

LWORK

          LWORK is INTEGER
          The length of WORK.  LWORK must be at least M, and should be
          M*NB, where NB is the blocksize for this environment.

RWORK

          RWORK is DOUBLE PRECISION array, dimension (M)

RESULT

          RESULT is DOUBLE PRECISION array, dimension (4)
          The test ratios compare two techniques for multiplying a
          random matrix C by an n-by-n orthogonal matrix Q.
          RESULT(1) = norm( Q*C - Q*C )  / ( N * norm(C) * EPS )
          RESULT(2) = norm( C*Q - C*Q )  / ( N * norm(C) * EPS )
          RESULT(3) = norm( Q'*C - Q'*C )/ ( N * norm(C) * EPS )
          RESULT(4) = norm( C*Q' - C*Q' )/ ( N * norm(C) * EPS )
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 134 of file zrqt03.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Referenced By

The man page zrqt03(3) is an alias of zrqt03.f(3).

Tue Nov 28 2023 12:08:43 Version 3.12.0 LAPACK