zpbtf2.f man page

zpbtf2.f —

Synopsis

Functions/Subroutines

subroutine zpbtf2 (UPLO, N, KD, AB, LDAB, INFO)
ZPBTF2 computes the Cholesky factorization of a symmetric/Hermitian positive definite band matrix (unblocked algorithm).

Function/Subroutine Documentation

subroutine zpbtf2 (character UPLO, integer N, integer KD, complex*16, dimension( ldab, * ) AB, integer LDAB, integer INFO)

ZPBTF2 computes the Cholesky factorization of a symmetric/Hermitian positive definite band matrix (unblocked algorithm).  

Purpose:

 ZPBTF2 computes the Cholesky factorization of a complex Hermitian
 positive definite band matrix A.

 The factorization has the form
    A = U**H * U ,  if UPLO = 'U', or
    A = L  * L**H,  if UPLO = 'L',
 where U is an upper triangular matrix, U**H is the conjugate transpose
 of U, and L is lower triangular.

 This is the unblocked version of the algorithm, calling Level 2 BLAS.
Parameters:

UPLO

          UPLO is CHARACTER*1
          Specifies whether the upper or lower triangular part of the
          Hermitian matrix A is stored:
          = 'U':  Upper triangular
          = 'L':  Lower triangular

N

          N is INTEGER
          The order of the matrix A.  N >= 0.

KD

          KD is INTEGER
          The number of super-diagonals of the matrix A if UPLO = 'U',
          or the number of sub-diagonals if UPLO = 'L'.  KD >= 0.

AB

          AB is COMPLEX*16 array, dimension (LDAB,N)
          On entry, the upper or lower triangle of the Hermitian band
          matrix A, stored in the first KD+1 rows of the array.  The
          j-th column of A is stored in the j-th column of the array AB
          as follows:
          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).

          On exit, if INFO = 0, the triangular factor U or L from the
          Cholesky factorization A = U**H *U or A = L*L**H of the band
          matrix A, in the same storage format as A.

LDAB

          LDAB is INTEGER
          The leading dimension of the array AB.  LDAB >= KD+1.

INFO

          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -k, the k-th argument had an illegal value
          > 0: if INFO = k, the leading minor of order k is not
               positive definite, and the factorization could not be
               completed.
Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

December 2016

Further Details:

  The band storage scheme is illustrated by the following example, when
  N = 6, KD = 2, and UPLO = 'U':

  On entry:                       On exit:

      *    *   a13  a24  a35  a46      *    *   u13  u24  u35  u46
      *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56
     a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66

  Similarly, if UPLO = 'L' the format of A is as follows:

  On entry:                       On exit:

     a11  a22  a33  a44  a55  a66     l11  l22  l33  l44  l55  l66
     a21  a32  a43  a54  a65   *      l21  l32  l43  l54  l65   *
     a31  a42  a53  a64   *    *      l31  l42  l53  l64   *    *

  Array elements marked * are not used by the routine.

Definition at line 144 of file zpbtf2.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Referenced By

The man page zpbtf2(3) is an alias of zpbtf2.f(3).

Sat Jun 24 2017 Version 3.7.1 LAPACK