zlarrv.f man page

zlarrv.f —

Synopsis

Functions/Subroutines

subroutine zlarrv (N, VL, VU, D, L, PIVMIN, ISPLIT, M, DOL, DOU, MINRGP, RTOL1, RTOL2, W, WERR, WGAP, IBLOCK, INDEXW, GERS, Z, LDZ, ISUPPZ, WORK, IWORK, INFO)
ZLARRV computes the eigenvectors of the tridiagonal matrix T = L D LT given L, D and the eigenvalues of L D LT.

Function/Subroutine Documentation

subroutine zlarrv (integerN, double precisionVL, double precisionVU, double precision, dimension( * )D, double precision, dimension( * )L, double precisionPIVMIN, integer, dimension( * )ISPLIT, integerM, integerDOL, integerDOU, double precisionMINRGP, double precisionRTOL1, double precisionRTOL2, double precision, dimension( * )W, double precision, dimension( * )WERR, double precision, dimension( * )WGAP, integer, dimension( * )IBLOCK, integer, dimension( * )INDEXW, double precision, dimension( * )GERS, complex*16, dimension( ldz, * )Z, integerLDZ, integer, dimension( * )ISUPPZ, double precision, dimension( * )WORK, integer, dimension( * )IWORK, integerINFO)

ZLARRV computes the eigenvectors of the tridiagonal matrix T = L D LT given L, D and the eigenvalues of L D LT.

Purpose:

ZLARRV computes the eigenvectors of the tridiagonal matrix
T = L D L**T given L, D and APPROXIMATIONS to the eigenvalues of L D L**T.
The input eigenvalues should have been computed by DLARRE.

Parameters:

N

N is INTEGER
The order of the matrix.  N >= 0.

VL

VL is DOUBLE PRECISION

VU

VU is DOUBLE PRECISION
Lower and upper bounds of the interval that contains the desired
eigenvalues. VL < VU. Needed to compute gaps on the left or right
end of the extremal eigenvalues in the desired RANGE.

D

D is DOUBLE PRECISION array, dimension (N)
On entry, the N diagonal elements of the diagonal matrix D.
On exit, D may be overwritten.

L

L is DOUBLE PRECISION array, dimension (N)
On entry, the (N-1) subdiagonal elements of the unit
bidiagonal matrix L are in elements 1 to N-1 of L
(if the matrix is not splitted.) At the end of each block
is stored the corresponding shift as given by DLARRE.
On exit, L is overwritten.

PIVMIN

PIVMIN is DOUBLE PRECISION
The minimum pivot allowed in the Sturm sequence.

ISPLIT

ISPLIT is INTEGER array, dimension (N)
The splitting points, at which T breaks up into blocks.
The first block consists of rows/columns 1 to
ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1
through ISPLIT( 2 ), etc.

M

M is INTEGER
The total number of input eigenvalues.  0 <= M <= N.

DOL

DOL is INTEGER

DOU

DOU is INTEGER
If the user wants to compute only selected eigenvectors from all
the eigenvalues supplied, he can specify an index range DOL:DOU.
Or else the setting DOL=1, DOU=M should be applied.
Note that DOL and DOU refer to the order in which the eigenvalues
are stored in W.
If the user wants to compute only selected eigenpairs, then
the columns DOL-1 to DOU+1 of the eigenvector space Z contain the
computed eigenvectors. All other columns of Z are set to zero.

MINRGP

MINRGP is DOUBLE PRECISION

RTOL1

RTOL1 is DOUBLE PRECISION

RTOL2

RTOL2 is DOUBLE PRECISION
 Parameters for bisection.
 An interval [LEFT,RIGHT] has converged if
 RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )

W

W is DOUBLE PRECISION array, dimension (N)
The first M elements of W contain the APPROXIMATE eigenvalues for
which eigenvectors are to be computed.  The eigenvalues
should be grouped by split-off block and ordered from
smallest to largest within the block ( The output array
W from DLARRE is expected here ). Furthermore, they are with
respect to the shift of the corresponding root representation
for their block. On exit, W holds the eigenvalues of the
UNshifted matrix.

WERR

WERR is DOUBLE PRECISION array, dimension (N)
The first M elements contain the semiwidth of the uncertainty
interval of the corresponding eigenvalue in W

WGAP

WGAP is DOUBLE PRECISION array, dimension (N)
The separation from the right neighbor eigenvalue in W.

IBLOCK

IBLOCK is INTEGER array, dimension (N)
The indices of the blocks (submatrices) associated with the
corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue
W(i) belongs to the first block from the top, =2 if W(i)
belongs to the second block, etc.

INDEXW

INDEXW is INTEGER array, dimension (N)
The indices of the eigenvalues within each block (submatrix);
for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the
i-th eigenvalue W(i) is the 10-th eigenvalue in the second block.

GERS

GERS is DOUBLE PRECISION array, dimension (2*N)
The N Gerschgorin intervals (the i-th Gerschgorin interval
is (GERS(2*i-1), GERS(2*i)). The Gerschgorin intervals should
be computed from the original UNshifted matrix.

Z

Z is COMPLEX*16 array, dimension (LDZ, max(1,M) )
If INFO = 0, the first M columns of Z contain the
orthonormal eigenvectors of the matrix T
corresponding to the input eigenvalues, with the i-th
column of Z holding the eigenvector associated with W(i).
Note: the user must ensure that at least max(1,M) columns are
supplied in the array Z.

LDZ

LDZ is INTEGER
The leading dimension of the array Z.  LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).

ISUPPZ

ISUPPZ is INTEGER array, dimension ( 2*max(1,M) )
The support of the eigenvectors in Z, i.e., the indices
indicating the nonzero elements in Z. The I-th eigenvector
is nonzero only in elements ISUPPZ( 2*I-1 ) through
ISUPPZ( 2*I ).

WORK

WORK is DOUBLE PRECISION array, dimension (12*N)

IWORK

IWORK is INTEGER array, dimension (7*N)

INFO

INFO is INTEGER
= 0:  successful exit

> 0:  A problem occured in ZLARRV.
< 0:  One of the called subroutines signaled an internal problem.
      Needs inspection of the corresponding parameter IINFO
      for further information.

=-1:  Problem in DLARRB when refining a child's eigenvalues.
=-2:  Problem in DLARRF when computing the RRR of a child.
      When a child is inside a tight cluster, it can be difficult
      to find an RRR. A partial remedy from the user's point of
      view is to make the parameter MINRGP smaller and recompile.
      However, as the orthogonality of the computed vectors is
      proportional to 1/MINRGP, the user should be aware that
      he might be trading in precision when he decreases MINRGP.
=-3:  Problem in DLARRB when refining a single eigenvalue
      after the Rayleigh correction was rejected.
= 5:  The Rayleigh Quotient Iteration failed to converge to
      full accuracy in MAXITR steps.

Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

September 2012

Contributors:

Beresford Parlett, University of California, Berkeley, USA
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA

Definition at line 280 of file zlarrv.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Referenced By

zlarrv(3) is an alias of zlarrv.f(3).

Sat Nov 16 2013 Version 3.4.2 LAPACK