zlalsa.f man page

zlalsa.f —

Synopsis

Functions/Subroutines

subroutine zlalsa (ICOMPQ, SMLSIZ, N, NRHS, B, LDB, BX, LDBX, U, LDU, VT, K, DIFL, DIFR, Z, POLES, GIVPTR, GIVCOL, LDGCOL, PERM, GIVNUM, C, S, RWORK, IWORK, INFO)
ZLALSA computes the SVD of the coefficient matrix in compact form. Used by sgelsd.

Function/Subroutine Documentation

subroutine zlalsa (integerICOMPQ, integerSMLSIZ, integerN, integerNRHS, complex*16, dimension( ldb, * )B, integerLDB, complex*16, dimension( ldbx, * )BX, integerLDBX, double precision, dimension( ldu, * )U, integerLDU, double precision, dimension( ldu, * )VT, integer, dimension( * )K, double precision, dimension( ldu, * )DIFL, double precision, dimension( ldu, * )DIFR, double precision, dimension( ldu, * )Z, double precision, dimension( ldu, * )POLES, integer, dimension( * )GIVPTR, integer, dimension( ldgcol, * )GIVCOL, integerLDGCOL, integer, dimension( ldgcol, * )PERM, double precision, dimension( ldu, * )GIVNUM, double precision, dimension( * )C, double precision, dimension( * )S, double precision, dimension( * )RWORK, integer, dimension( * )IWORK, integerINFO)

ZLALSA computes the SVD of the coefficient matrix in compact form. Used by sgelsd.

Purpose:

ZLALSA is an itermediate step in solving the least squares problem
by computing the SVD of the coefficient matrix in compact form (The
singular vectors are computed as products of simple orthorgonal
matrices.).

If ICOMPQ = 0, ZLALSA applies the inverse of the left singular vector
matrix of an upper bidiagonal matrix to the right hand side; and if
ICOMPQ = 1, ZLALSA applies the right singular vector matrix to the
right hand side. The singular vector matrices were generated in
compact form by ZLALSA.

Parameters:

ICOMPQ

 ICOMPQ is INTEGER
Specifies whether the left or the right singular vector
matrix is involved.
= 0: Left singular vector matrix
= 1: Right singular vector matrix

SMLSIZ

 SMLSIZ is INTEGER
The maximum size of the subproblems at the bottom of the
computation tree.

N

 N is INTEGER
The row and column dimensions of the upper bidiagonal matrix.

NRHS

 NRHS is INTEGER
The number of columns of B and BX. NRHS must be at least 1.

B

 B is COMPLEX*16 array, dimension ( LDB, NRHS )
On input, B contains the right hand sides of the least
squares problem in rows 1 through M.
On output, B contains the solution X in rows 1 through N.

LDB

 LDB is INTEGER
The leading dimension of B in the calling subprogram.
LDB must be at least max(1,MAX( M, N ) ).

BX

 BX is COMPLEX*16 array, dimension ( LDBX, NRHS )
On exit, the result of applying the left or right singular
vector matrix to B.

LDBX

 LDBX is INTEGER
The leading dimension of BX.

U

 U is DOUBLE PRECISION array, dimension ( LDU, SMLSIZ ).
On entry, U contains the left singular vector matrices of all
subproblems at the bottom level.

LDU

 LDU is INTEGER, LDU = > N.
The leading dimension of arrays U, VT, DIFL, DIFR,
POLES, GIVNUM, and Z.

VT

 VT is DOUBLE PRECISION array, dimension ( LDU, SMLSIZ+1 ).
On entry, VT**H contains the right singular vector matrices of
all subproblems at the bottom level.

K

K is INTEGER array, dimension ( N ).

DIFL

 DIFL is DOUBLE PRECISION array, dimension ( LDU, NLVL ).
where NLVL = INT(log_2 (N/(SMLSIZ+1))) + 1.

DIFR

 DIFR is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
On entry, DIFL(*, I) and DIFR(*, 2 * I -1) record
distances between singular values on the I-th level and
singular values on the (I -1)-th level, and DIFR(*, 2 * I)
record the normalizing factors of the right singular vectors
matrices of subproblems on I-th level.

Z

 Z is DOUBLE PRECISION array, dimension ( LDU, NLVL ).
On entry, Z(1, I) contains the components of the deflation-
adjusted updating row vector for subproblems on the I-th
level.

POLES

 POLES is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
On entry, POLES(*, 2 * I -1: 2 * I) contains the new and old
singular values involved in the secular equations on the I-th
level.

GIVPTR

 GIVPTR is INTEGER array, dimension ( N ).
On entry, GIVPTR( I ) records the number of Givens
rotations performed on the I-th problem on the computation
tree.

GIVCOL

 GIVCOL is INTEGER array, dimension ( LDGCOL, 2 * NLVL ).
On entry, for each I, GIVCOL(*, 2 * I - 1: 2 * I) records the
locations of Givens rotations performed on the I-th level on
the computation tree.

LDGCOL

 LDGCOL is INTEGER, LDGCOL = > N.
The leading dimension of arrays GIVCOL and PERM.

PERM

 PERM is INTEGER array, dimension ( LDGCOL, NLVL ).
On entry, PERM(*, I) records permutations done on the I-th
level of the computation tree.

GIVNUM

 GIVNUM is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
On entry, GIVNUM(*, 2 *I -1 : 2 * I) records the C- and S-
values of Givens rotations performed on the I-th level on the
computation tree.

C

 C is DOUBLE PRECISION array, dimension ( N ).
On entry, if the I-th subproblem is not square,
C( I ) contains the C-value of a Givens rotation related to
the right null space of the I-th subproblem.

S

 S is DOUBLE PRECISION array, dimension ( N ).
On entry, if the I-th subproblem is not square,
S( I ) contains the S-value of a Givens rotation related to
the right null space of the I-th subproblem.

RWORK

 RWORK is DOUBLE PRECISION array, dimension at least
MAX( (SMLSZ+1)*NRHS*3, N*(1+NRHS) + 2*NRHS ).

IWORK

 IWORK is INTEGER array.
The dimension must be at least 3 * N

INFO

INFO is INTEGER
= 0:  successful exit.
< 0:  if INFO = -i, the i-th argument had an illegal value.

Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

September 2012

Contributors:

Ming Gu and Ren-Cang Li, Computer Science Division, University of California at Berkeley, USA
Osni Marques, LBNL/NERSC, USA

Definition at line 266 of file zlalsa.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Referenced By

zlalsa(3) is an alias of zlalsa.f(3).

Sat Nov 16 2013 Version 3.4.2 LAPACK