# zhpgv.f man page

zhpgv.f —

## Synopsis

### Functions/Subroutines

subroutinezhpgv(ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK, RWORK, INFO)ZHPGST

## Function/Subroutine Documentation

### subroutine zhpgv (integerITYPE, characterJOBZ, characterUPLO, integerN, complex*16, dimension( * )AP, complex*16, dimension( * )BP, double precision, dimension( * )W, complex*16, dimension( ldz, * )Z, integerLDZ, complex*16, dimension( * )WORK, double precision, dimension( * )RWORK, integerINFO)

**ZHPGST**

**Purpose:**

```
ZHPGV computes all the eigenvalues and, optionally, the eigenvectors
of a complex generalized Hermitian-definite eigenproblem, of the form
A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x.
Here A and B are assumed to be Hermitian, stored in packed format,
and B is also positive definite.
```

**Parameters:**

*ITYPE*

```
ITYPE is INTEGER
Specifies the problem type to be solved:
= 1: A*x = (lambda)*B*x
= 2: A*B*x = (lambda)*x
= 3: B*A*x = (lambda)*x
```

*JOBZ*

```
JOBZ is CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
```

*UPLO*

```
UPLO is CHARACTER*1
= 'U': Upper triangles of A and B are stored;
= 'L': Lower triangles of A and B are stored.
```

*N*

```
N is INTEGER
The order of the matrices A and B. N >= 0.
```

*AP*

```
AP is COMPLEX*16 array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the Hermitian matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
On exit, the contents of AP are destroyed.
```

*BP*

```
BP is COMPLEX*16 array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the Hermitian matrix
B, packed columnwise in a linear array. The j-th column of B
is stored in the array BP as follows:
if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
On exit, the triangular factor U or L from the Cholesky
factorization B = U**H*U or B = L*L**H, in the same storage
format as B.
```

*W*

```
W is DOUBLE PRECISION array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
```

*Z*

```
Z is COMPLEX*16 array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
eigenvectors. The eigenvectors are normalized as follows:
if ITYPE = 1 or 2, Z**H*B*Z = I;
if ITYPE = 3, Z**H*inv(B)*Z = I.
If JOBZ = 'N', then Z is not referenced.
```

*LDZ*

```
LDZ is INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
```

*WORK*

`WORK is COMPLEX*16 array, dimension (max(1, 2*N-1))`

*RWORK*

`RWORK is DOUBLE PRECISION array, dimension (max(1, 3*N-2))`

*INFO*

```
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: ZPPTRF or ZHPEV returned an error code:
<= N: if INFO = i, ZHPEV failed to converge;
i off-diagonal elements of an intermediate
tridiagonal form did not convergeto zero;
> N: if INFO = N + i, for 1 <= i <= n, then the leading
minor of order i of B is not positive definite.
The factorization of B could not be completed and
no eigenvalues or eigenvectors were computed.
```

**Author:**

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

**Date:**

November 2011

Definition at line 165 of file zhpgv.f.

## Author

Generated automatically by Doxygen for LAPACK from the source code.

## Referenced By

zhpgv(3) is an alias of zhpgv.f(3).