# zhegvx.f - Man Page

SRC/zhegvx.f

## Synopsis

### Functions/Subroutines

subroutine zhegvx (itype, jobz, range, uplo, n, a, lda, b, ldb, vl, vu, il, iu, abstol, m, w, z, ldz, work, lwork, rwork, iwork, ifail, info)
ZHEGVX

## Function/Subroutine Documentation

### subroutine zhegvx (integer itype, character jobz, character range, character uplo, integer n, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldb, * ) b, integer ldb, double precision vl, double precision vu, integer il, integer iu, double precision abstol, integer m, double precision, dimension( * ) w, complex*16, dimension( ldz, * ) z, integer ldz, complex*16, dimension( * ) work, integer lwork, double precision, dimension( * ) rwork, integer, dimension( * ) iwork, integer, dimension( * ) ifail, integer info)

ZHEGVX

Purpose:

``` ZHEGVX computes selected eigenvalues, and optionally, eigenvectors
of a complex generalized Hermitian-definite eigenproblem, of the form
A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and
B are assumed to be Hermitian and B is also positive definite.
Eigenvalues and eigenvectors can be selected by specifying either a
range of values or a range of indices for the desired eigenvalues.```
Parameters

ITYPE

```          ITYPE is INTEGER
Specifies the problem type to be solved:
= 1:  A*x = (lambda)*B*x
= 2:  A*B*x = (lambda)*x
= 3:  B*A*x = (lambda)*x```

JOBZ

```          JOBZ is CHARACTER*1
= 'N':  Compute eigenvalues only;
= 'V':  Compute eigenvalues and eigenvectors.```

RANGE

```          RANGE is CHARACTER*1
= 'A': all eigenvalues will be found.
= 'V': all eigenvalues in the half-open interval (VL,VU]
will be found.
= 'I': the IL-th through IU-th eigenvalues will be found.```

UPLO

```          UPLO is CHARACTER*1
= 'U':  Upper triangles of A and B are stored;
= 'L':  Lower triangles of A and B are stored.```

N

```          N is INTEGER
The order of the matrices A and B.  N >= 0.```

A

```          A is COMPLEX*16 array, dimension (LDA, N)
On entry, the Hermitian matrix A.  If UPLO = 'U', the
leading N-by-N upper triangular part of A contains the
upper triangular part of the matrix A.  If UPLO = 'L',
the leading N-by-N lower triangular part of A contains
the lower triangular part of the matrix A.

On exit,  the lower triangle (if UPLO='L') or the upper
triangle (if UPLO='U') of A, including the diagonal, is
destroyed.```

LDA

```          LDA is INTEGER
The leading dimension of the array A.  LDA >= max(1,N).```

B

```          B is COMPLEX*16 array, dimension (LDB, N)
On entry, the Hermitian matrix B.  If UPLO = 'U', the
leading N-by-N upper triangular part of B contains the
upper triangular part of the matrix B.  If UPLO = 'L',
the leading N-by-N lower triangular part of B contains
the lower triangular part of the matrix B.

On exit, if INFO <= N, the part of B containing the matrix is
overwritten by the triangular factor U or L from the Cholesky
factorization B = U**H*U or B = L*L**H.```

LDB

```          LDB is INTEGER
The leading dimension of the array B.  LDB >= max(1,N).```

VL

```          VL is DOUBLE PRECISION

If RANGE='V', the lower bound of the interval to
be searched for eigenvalues. VL < VU.
Not referenced if RANGE = 'A' or 'I'.```

VU

```          VU is DOUBLE PRECISION

If RANGE='V', the upper bound of the interval to
be searched for eigenvalues. VL < VU.
Not referenced if RANGE = 'A' or 'I'.```

IL

```          IL is INTEGER

If RANGE='I', the index of the
smallest eigenvalue to be returned.
1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
Not referenced if RANGE = 'A' or 'V'.```

IU

```          IU is INTEGER

If RANGE='I', the index of the
largest eigenvalue to be returned.
1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
Not referenced if RANGE = 'A' or 'V'.```

ABSTOL

```          ABSTOL is DOUBLE PRECISION
The absolute error tolerance for the eigenvalues.
An approximate eigenvalue is accepted as converged
when it is determined to lie in an interval [a,b]
of width less than or equal to

ABSTOL + EPS *   max( |a|,|b| ) ,

where EPS is the machine precision.  If ABSTOL is less than
or equal to zero, then  EPS*|T|  will be used in its place,
where |T| is the 1-norm of the tridiagonal matrix obtained
by reducing C to tridiagonal form, where C is the symmetric
matrix of the standard symmetric problem to which the
generalized problem is transformed.

Eigenvalues will be computed most accurately when ABSTOL is
set to twice the underflow threshold 2*DLAMCH('S'), not zero.
If this routine returns with INFO>0, indicating that some
eigenvectors did not converge, try setting ABSTOL to
2*DLAMCH('S').```

M

```          M is INTEGER
The total number of eigenvalues found.  0 <= M <= N.
If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.```

W

```          W is DOUBLE PRECISION array, dimension (N)
The first M elements contain the selected
eigenvalues in ascending order.```

Z

```          Z is COMPLEX*16 array, dimension (LDZ, max(1,M))
If JOBZ = 'N', then Z is not referenced.
If JOBZ = 'V', then if INFO = 0, the first M columns of Z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of Z holding the eigenvector associated with W(i).
The eigenvectors are normalized as follows:
if ITYPE = 1 or 2, Z**T*B*Z = I;
if ITYPE = 3, Z**T*inv(B)*Z = I.

If an eigenvector fails to converge, then that column of Z
contains the latest approximation to the eigenvector, and the
index of the eigenvector is returned in IFAIL.
Note: the user must ensure that at least max(1,M) columns are
supplied in the array Z; if RANGE = 'V', the exact value of M
is not known in advance and an upper bound must be used.```

LDZ

```          LDZ is INTEGER
The leading dimension of the array Z.  LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).```

WORK

```          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.```

LWORK

```          LWORK is INTEGER
The length of the array WORK.  LWORK >= max(1,2*N).
For optimal efficiency, LWORK >= (NB+1)*N,
where NB is the blocksize for ZHETRD returned by ILAENV.

If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.```

RWORK

`          RWORK is DOUBLE PRECISION array, dimension (7*N)`

IWORK

`          IWORK is INTEGER array, dimension (5*N)`

IFAIL

```          IFAIL is INTEGER array, dimension (N)
If JOBZ = 'V', then if INFO = 0, the first M elements of
IFAIL are zero.  If INFO > 0, then IFAIL contains the
indices of the eigenvectors that failed to converge.
If JOBZ = 'N', then IFAIL is not referenced.```

INFO

```          INFO is INTEGER
= 0:  successful exit
< 0:  if INFO = -i, the i-th argument had an illegal value
> 0:  ZPOTRF or ZHEEVX returned an error code:
<= N:  if INFO = i, ZHEEVX failed to converge;
i eigenvectors failed to converge.  Their indices
are stored in array IFAIL.
> N:   if INFO = N + i, for 1 <= i <= N, then the leading
principal minor of order i of B is not positive.
The factorization of B could not be completed and
no eigenvalues or eigenvectors were computed.```
Author

Univ. of Tennessee

Univ. of California Berkeley

NAG Ltd.

Contributors:

Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA

Definition at line 304 of file zhegvx.f.

## Author

Generated automatically by Doxygen for LAPACK from the source code.

## Referenced By

The man page zhegvx(3) is an alias of zhegvx.f(3).

Tue Nov 28 2023 12:08:42 Version 3.12.0 LAPACK