zheevd.f - Man Page
SRC/zheevd.f
Synopsis
Functions/Subroutines
subroutine zheevd (jobz, uplo, n, a, lda, w, work, lwork, rwork, lrwork, iwork, liwork, info)
ZHEEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matrices
Function/Subroutine Documentation
subroutine zheevd (character jobz, character uplo, integer n, complex*16, dimension( lda, * ) a, integer lda, double precision, dimension( * ) w, complex*16, dimension( * ) work, integer lwork, double precision, dimension( * ) rwork, integer lrwork, integer, dimension( * ) iwork, integer liwork, integer info)
ZHEEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matrices
Purpose:
ZHEEVD computes all eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A. If eigenvectors are desired, it uses a divide and conquer algorithm.
- Parameters
JOBZ
JOBZ is CHARACTER*1 = 'N': Compute eigenvalues only; = 'V': Compute eigenvalues and eigenvectors.
UPLO
UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored.
N
N is INTEGER The order of the matrix A. N >= 0.
A
A is COMPLEX*16 array, dimension (LDA, N) On entry, the Hermitian matrix A. If UPLO = 'U', the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A. If UPLO = 'L', the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A. On exit, if JOBZ = 'V', then if INFO = 0, A contains the orthonormal eigenvectors of the matrix A. If JOBZ = 'N', then on exit the lower triangle (if UPLO='L') or the upper triangle (if UPLO='U') of A, including the diagonal, is destroyed.
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).
W
W is DOUBLE PRECISION array, dimension (N) If INFO = 0, the eigenvalues in ascending order.
WORK
WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
LWORK is INTEGER The length of the array WORK. If N <= 1, LWORK must be at least 1. If JOBZ = 'N' and N > 1, LWORK must be at least N + 1. If JOBZ = 'V' and N > 1, LWORK must be at least 2*N + N**2. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA.
RWORK
RWORK is DOUBLE PRECISION array, dimension (LRWORK) On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
LRWORK
LRWORK is INTEGER The dimension of the array RWORK. If N <= 1, LRWORK must be at least 1. If JOBZ = 'N' and N > 1, LRWORK must be at least N. If JOBZ = 'V' and N > 1, LRWORK must be at least 1 + 5*N + 2*N**2. If LRWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA.
IWORK
IWORK is INTEGER array, dimension (MAX(1,LIWORK)) On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK
LIWORK is INTEGER The dimension of the array IWORK. If N <= 1, LIWORK must be at least 1. If JOBZ = 'N' and N > 1, LIWORK must be at least 1. If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N. If LIWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA.
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i and JOBZ = 'N', then the algorithm failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero; if INFO = i and JOBZ = 'V', then the algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns INFO/(N+1) through mod(INFO,N+1).
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
- Further Details:
Modified description of INFO. Sven, 16 Feb 05.
- Contributors:
Jeff Rutter, Computer Science Division, University of California at Berkeley, USA
Definition at line 197 of file zheevd.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Referenced By
The man page zheevd(3) is an alias of zheevd.f(3).
Tue Nov 28 2023 12:08:42 Version 3.12.0 LAPACK