# zhecon_3.f - Man Page

SRC/zhecon_3.f

## Synopsis

### Functions/Subroutines

subroutine **zhecon_3** (uplo, n, a, lda, e, ipiv, anorm, rcond, work, info)**ZHECON_3**

## Function/Subroutine Documentation

### subroutine zhecon_3 (character uplo, integer n, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( * ) e, integer, dimension( * ) ipiv, double precision anorm, double precision rcond, complex*16, dimension( * ) work, integer info)

**ZHECON_3**

**Purpose:**

ZHECON_3 estimates the reciprocal of the condition number (in the 1-norm) of a complex Hermitian matrix A using the factorization computed by ZHETRF_RK or ZHETRF_BK: A = P*U*D*(U**H)*(P**T) or A = P*L*D*(L**H)*(P**T), where U (or L) is unit upper (or lower) triangular matrix, U**H (or L**H) is the conjugate of U (or L), P is a permutation matrix, P**T is the transpose of P, and D is Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks. An estimate is obtained for norm(inv(A)), and the reciprocal of the condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))). This routine uses BLAS3 solver ZHETRS_3.

**Parameters***UPLO*UPLO is CHARACTER*1 Specifies whether the details of the factorization are stored as an upper or lower triangular matrix: = 'U': Upper triangular, form is A = P*U*D*(U**H)*(P**T); = 'L': Lower triangular, form is A = P*L*D*(L**H)*(P**T).

*N*N is INTEGER The order of the matrix A. N >= 0.

*A*A is COMPLEX*16 array, dimension (LDA,N) Diagonal of the block diagonal matrix D and factors U or L as computed by ZHETRF_RK and ZHETRF_BK: a) ONLY diagonal elements of the Hermitian block diagonal matrix D on the diagonal of A, i.e. D(k,k) = A(k,k); (superdiagonal (or subdiagonal) elements of D should be provided on entry in array E), and b) If UPLO = 'U': factor U in the superdiagonal part of A. If UPLO = 'L': factor L in the subdiagonal part of A.

*LDA*LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).

*E*E is COMPLEX*16 array, dimension (N) On entry, contains the superdiagonal (or subdiagonal) elements of the Hermitian block diagonal matrix D with 1-by-1 or 2-by-2 diagonal blocks, where If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced; If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced. NOTE: For 1-by-1 diagonal block D(k), where 1 <= k <= N, the element E(k) is not referenced in both UPLO = 'U' or UPLO = 'L' cases.

*IPIV*IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by ZHETRF_RK or ZHETRF_BK.

*ANORM*ANORM is DOUBLE PRECISION The 1-norm of the original matrix A.

*RCOND*RCOND is DOUBLE PRECISION The reciprocal of the condition number of the matrix A, computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an estimate of the 1-norm of inv(A) computed in this routine.

*WORK*WORK is COMPLEX*16 array, dimension (2*N)

*INFO*INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value

**Author**Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

**Contributors:**

June 2017, Igor Kozachenko, Computer Science Division, University of California, Berkeley September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, School of Mathematics, University of Manchester

Definition at line **164** of file **zhecon_3.f**.

## Author

Generated automatically by Doxygen for LAPACK from the source code.

## Referenced By

The man page zhecon_3(3) is an alias of zhecon_3.f(3).

Tue Nov 28 2023 12:08:42 Version 3.12.0 LAPACK