# zhbgvx.f - Man Page

## Synopsis

### Functions/Subroutines

subroutine **zhbgvx** (JOBZ, RANGE, UPLO, **N**, KA, KB, AB, LDAB, BB, LDBB, Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, RWORK, IWORK, IFAIL, INFO)**ZHBGVX**

## Function/Subroutine Documentation

### subroutine zhbgvx (character JOBZ, character RANGE, character UPLO, integer N, integer KA, integer KB, complex*16, dimension( ldab, * ) AB, integer LDAB, complex*16, dimension( ldbb, * ) BB, integer LDBB, complex*16, dimension( ldq, * ) Q, integer LDQ, double precision VL, double precision VU, integer IL, integer IU, double precision ABSTOL, integer M, double precision, dimension( * ) W, complex*16, dimension( ldz, * ) Z, integer LDZ, complex*16, dimension( * ) WORK, double precision, dimension( * ) RWORK, integer, dimension( * ) IWORK, integer, dimension( * ) IFAIL, integer INFO)

**ZHBGVX**

**Purpose:**

ZHBGVX computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite banded eigenproblem, of the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian and banded, and B is also positive definite. Eigenvalues and eigenvectors can be selected by specifying either all eigenvalues, a range of values or a range of indices for the desired eigenvalues.

**Parameters:***JOBZ*JOBZ is CHARACTER*1 = 'N': Compute eigenvalues only; = 'V': Compute eigenvalues and eigenvectors.

*RANGE*RANGE is CHARACTER*1 = 'A': all eigenvalues will be found; = 'V': all eigenvalues in the half-open interval (VL,VU] will be found; = 'I': the IL-th through IU-th eigenvalues will be found.

*UPLO*UPLO is CHARACTER*1 = 'U': Upper triangles of A and B are stored; = 'L': Lower triangles of A and B are stored.

*N*N is INTEGER The order of the matrices A and B. N >= 0.

*KA*KA is INTEGER The number of superdiagonals of the matrix A if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'. KA >= 0.

*KB*KB is INTEGER The number of superdiagonals of the matrix B if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'. KB >= 0.

*AB*AB is COMPLEX*16 array, dimension (LDAB, N) On entry, the upper or lower triangle of the Hermitian band matrix A, stored in the first ka+1 rows of the array. The j-th column of A is stored in the j-th column of the array AB as follows: if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka). On exit, the contents of AB are destroyed.

*LDAB*LDAB is INTEGER The leading dimension of the array AB. LDAB >= KA+1.

*BB*BB is COMPLEX*16 array, dimension (LDBB, N) On entry, the upper or lower triangle of the Hermitian band matrix B, stored in the first kb+1 rows of the array. The j-th column of B is stored in the j-th column of the array BB as follows: if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j; if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb). On exit, the factor S from the split Cholesky factorization B = S**H*S, as returned by ZPBSTF.

*LDBB*LDBB is INTEGER The leading dimension of the array BB. LDBB >= KB+1.

*Q*Q is COMPLEX*16 array, dimension (LDQ, N) If JOBZ = 'V', the n-by-n matrix used in the reduction of A*x = (lambda)*B*x to standard form, i.e. C*x = (lambda)*x, and consequently C to tridiagonal form. If JOBZ = 'N', the array Q is not referenced.

*LDQ*LDQ is INTEGER The leading dimension of the array Q. If JOBZ = 'N', LDQ >= 1. If JOBZ = 'V', LDQ >= max(1,N).

*VL*VL is DOUBLE PRECISION If RANGE='V', the lower bound of the interval to be searched for eigenvalues. VL < VU. Not referenced if RANGE = 'A' or 'I'.

*VU*VU is DOUBLE PRECISION If RANGE='V', the upper bound of the interval to be searched for eigenvalues. VL < VU. Not referenced if RANGE = 'A' or 'I'.

*IL*IL is INTEGER If RANGE='I', the index of the smallest eigenvalue to be returned. 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. Not referenced if RANGE = 'A' or 'V'.

*IU*IU is INTEGER If RANGE='I', the index of the largest eigenvalue to be returned. 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. Not referenced if RANGE = 'A' or 'V'.

*ABSTOL*ABSTOL is DOUBLE PRECISION The absolute error tolerance for the eigenvalues. An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a,b] of width less than or equal to ABSTOL + EPS * max( |a|,|b| ) , where EPS is the machine precision. If ABSTOL is less than or equal to zero, then EPS*|T| will be used in its place, where |T| is the 1-norm of the tridiagonal matrix obtained by reducing AP to tridiagonal form. Eigenvalues will be computed most accurately when ABSTOL is set to twice the underflow threshold 2*DLAMCH('S'), not zero. If this routine returns with INFO>0, indicating that some eigenvectors did not converge, try setting ABSTOL to 2*DLAMCH('S').

*M*M is INTEGER The total number of eigenvalues found. 0 <= M <= N. If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.

*W*W is DOUBLE PRECISION array, dimension (N) If INFO = 0, the eigenvalues in ascending order.

*Z*Z is COMPLEX*16 array, dimension (LDZ, N) If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of eigenvectors, with the i-th column of Z holding the eigenvector associated with W(i). The eigenvectors are normalized so that Z**H*B*Z = I. If JOBZ = 'N', then Z is not referenced.

*LDZ*LDZ is INTEGER The leading dimension of the array Z. LDZ >= 1, and if JOBZ = 'V', LDZ >= N.

*WORK*WORK is COMPLEX*16 array, dimension (N)

*RWORK*RWORK is DOUBLE PRECISION array, dimension (7*N)

*IWORK*IWORK is INTEGER array, dimension (5*N)

*IFAIL*IFAIL is INTEGER array, dimension (N) If JOBZ = 'V', then if INFO = 0, the first M elements of IFAIL are zero. If INFO > 0, then IFAIL contains the indices of the eigenvectors that failed to converge. If JOBZ = 'N', then IFAIL is not referenced.

*INFO*INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, and i is: <= N: then i eigenvectors failed to converge. Their indices are stored in array IFAIL. > N: if INFO = N + i, for 1 <= i <= N, then ZPBSTF returned INFO = i: B is not positive definite. The factorization of B could not be completed and no eigenvalues or eigenvectors were computed.

**Author:**Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

**Date:**June 2016

**Contributors:**Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA

Definition at line 302 of file zhbgvx.f.

## Author

Generated automatically by Doxygen for LAPACK from the source code.

## Referenced By

The man page zhbgvx(3) is an alias of zhbgvx.f(3).

Tue Nov 14 2017 Version 3.8.0 LAPACK