zggsvd3.f - Man Page

SRC/zggsvd3.f

Synopsis

Functions/Subroutines

subroutine zggsvd3 (jobu, jobv, jobq, m, n, p, k, l, a, lda, b, ldb, alpha, beta, u, ldu, v, ldv, q, ldq, work, lwork, rwork, iwork, info)
ZGGSVD3 computes the singular value decomposition (SVD) for OTHER matrices

Function/Subroutine Documentation

subroutine zggsvd3 (character jobu, character jobv, character jobq, integer m, integer n, integer p, integer k, integer l, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldb, * ) b, integer ldb, double precision, dimension( * ) alpha, double precision, dimension( * ) beta, complex*16, dimension( ldu, * ) u, integer ldu, complex*16, dimension( ldv, * ) v, integer ldv, complex*16, dimension( ldq, * ) q, integer ldq, complex*16, dimension( * ) work, integer lwork, double precision, dimension( * ) rwork, integer, dimension( * ) iwork, integer info)

ZGGSVD3 computes the singular value decomposition (SVD) for OTHER matrices  

Purpose:

 ZGGSVD3 computes the generalized singular value decomposition (GSVD)
 of an M-by-N complex matrix A and P-by-N complex matrix B:

       U**H*A*Q = D1*( 0 R ),    V**H*B*Q = D2*( 0 R )

 where U, V and Q are unitary matrices.
 Let K+L = the effective numerical rank of the
 matrix (A**H,B**H)**H, then R is a (K+L)-by-(K+L) nonsingular upper
 triangular matrix, D1 and D2 are M-by-(K+L) and P-by-(K+L) 'diagonal'
 matrices and of the following structures, respectively:

 If M-K-L >= 0,

                     K  L
        D1 =     K ( I  0 )
                 L ( 0  C )
             M-K-L ( 0  0 )

                   K  L
        D2 =   L ( 0  S )
             P-L ( 0  0 )

                 N-K-L  K    L
   ( 0 R ) = K (  0   R11  R12 )
             L (  0    0   R22 )
 where

   C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
   S = diag( BETA(K+1),  ... , BETA(K+L) ),
   C**2 + S**2 = I.

   R is stored in A(1:K+L,N-K-L+1:N) on exit.

 If M-K-L < 0,

                   K M-K K+L-M
        D1 =   K ( I  0    0   )
             M-K ( 0  C    0   )

                     K M-K K+L-M
        D2 =   M-K ( 0  S    0  )
             K+L-M ( 0  0    I  )
               P-L ( 0  0    0  )

                    N-K-L  K   M-K  K+L-M
   ( 0 R ) =     K ( 0    R11  R12  R13  )
               M-K ( 0     0   R22  R23  )
             K+L-M ( 0     0    0   R33  )

 where

   C = diag( ALPHA(K+1), ... , ALPHA(M) ),
   S = diag( BETA(K+1),  ... , BETA(M) ),
   C**2 + S**2 = I.

   (R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33 is stored
   ( 0  R22 R23 )
   in B(M-K+1:L,N+M-K-L+1:N) on exit.

 The routine computes C, S, R, and optionally the unitary
 transformation matrices U, V and Q.

 In particular, if B is an N-by-N nonsingular matrix, then the GSVD of
 A and B implicitly gives the SVD of A*inv(B):
                      A*inv(B) = U*(D1*inv(D2))*V**H.
 If ( A**H,B**H)**H has orthonormal columns, then the GSVD of A and B is also
 equal to the CS decomposition of A and B. Furthermore, the GSVD can
 be used to derive the solution of the eigenvalue problem:
                      A**H*A x = lambda* B**H*B x.
 In some literature, the GSVD of A and B is presented in the form
                  U**H*A*X = ( 0 D1 ),   V**H*B*X = ( 0 D2 )
 where U and V are orthogonal and X is nonsingular, and D1 and D2 are
 “diagonal”.  The former GSVD form can be converted to the latter
 form by taking the nonsingular matrix X as

                       X = Q*(  I   0    )
                             (  0 inv(R) )
Parameters

JOBU

          JOBU is CHARACTER*1
          = 'U':  Unitary matrix U is computed;
          = 'N':  U is not computed.

JOBV

          JOBV is CHARACTER*1
          = 'V':  Unitary matrix V is computed;
          = 'N':  V is not computed.

JOBQ

          JOBQ is CHARACTER*1
          = 'Q':  Unitary matrix Q is computed;
          = 'N':  Q is not computed.

M

          M is INTEGER
          The number of rows of the matrix A.  M >= 0.

N

          N is INTEGER
          The number of columns of the matrices A and B.  N >= 0.

P

          P is INTEGER
          The number of rows of the matrix B.  P >= 0.

K

          K is INTEGER

L

          L is INTEGER

          On exit, K and L specify the dimension of the subblocks
          described in Purpose.
          K + L = effective numerical rank of (A**H,B**H)**H.

A

          A is COMPLEX*16 array, dimension (LDA,N)
          On entry, the M-by-N matrix A.
          On exit, A contains the triangular matrix R, or part of R.
          See Purpose for details.

LDA

          LDA is INTEGER
          The leading dimension of the array A. LDA >= max(1,M).

B

          B is COMPLEX*16 array, dimension (LDB,N)
          On entry, the P-by-N matrix B.
          On exit, B contains part of the triangular matrix R if
          M-K-L < 0.  See Purpose for details.

LDB

          LDB is INTEGER
          The leading dimension of the array B. LDB >= max(1,P).

ALPHA

          ALPHA is DOUBLE PRECISION array, dimension (N)

BETA

          BETA is DOUBLE PRECISION array, dimension (N)

          On exit, ALPHA and BETA contain the generalized singular
          value pairs of A and B;
            ALPHA(1:K) = 1,
            BETA(1:K)  = 0,
          and if M-K-L >= 0,
            ALPHA(K+1:K+L) = C,
            BETA(K+1:K+L)  = S,
          or if M-K-L < 0,
            ALPHA(K+1:M)=C, ALPHA(M+1:K+L)=0
            BETA(K+1:M) =S, BETA(M+1:K+L) =1
          and
            ALPHA(K+L+1:N) = 0
            BETA(K+L+1:N)  = 0

U

          U is COMPLEX*16 array, dimension (LDU,M)
          If JOBU = 'U', U contains the M-by-M unitary matrix U.
          If JOBU = 'N', U is not referenced.

LDU

          LDU is INTEGER
          The leading dimension of the array U. LDU >= max(1,M) if
          JOBU = 'U'; LDU >= 1 otherwise.

V

          V is COMPLEX*16 array, dimension (LDV,P)
          If JOBV = 'V', V contains the P-by-P unitary matrix V.
          If JOBV = 'N', V is not referenced.

LDV

          LDV is INTEGER
          The leading dimension of the array V. LDV >= max(1,P) if
          JOBV = 'V'; LDV >= 1 otherwise.

Q

          Q is COMPLEX*16 array, dimension (LDQ,N)
          If JOBQ = 'Q', Q contains the N-by-N unitary matrix Q.
          If JOBQ = 'N', Q is not referenced.

LDQ

          LDQ is INTEGER
          The leading dimension of the array Q. LDQ >= max(1,N) if
          JOBQ = 'Q'; LDQ >= 1 otherwise.

WORK

          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

LWORK

          LWORK is INTEGER
          The dimension of the array WORK.

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA.

RWORK

          RWORK is DOUBLE PRECISION array, dimension (2*N)

IWORK

          IWORK is INTEGER array, dimension (N)
          On exit, IWORK stores the sorting information. More
          precisely, the following loop will sort ALPHA
             for I = K+1, min(M,K+L)
                 swap ALPHA(I) and ALPHA(IWORK(I))
             endfor
          such that ALPHA(1) >= ALPHA(2) >= ... >= ALPHA(N).

INFO

          INFO is INTEGER
          = 0:  successful exit.
          < 0:  if INFO = -i, the i-th argument had an illegal value.
          > 0:  if INFO = 1, the Jacobi-type procedure failed to
                converge.  For further details, see subroutine ZTGSJA.

Internal Parameters:

  TOLA    DOUBLE PRECISION
  TOLB    DOUBLE PRECISION
          TOLA and TOLB are the thresholds to determine the effective
          rank of (A**H,B**H)**H. Generally, they are set to
                   TOLA = MAX(M,N)*norm(A)*MACHEPS,
                   TOLB = MAX(P,N)*norm(B)*MACHEPS.
          The size of TOLA and TOLB may affect the size of backward
          errors of the decomposition.
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

Ming Gu and Huan Ren, Computer Science Division, University of California at Berkeley, USA

Further Details:

ZGGSVD3 replaces the deprecated subroutine ZGGSVD.

Definition at line 350 of file zggsvd3.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Referenced By

The man page zggsvd3(3) is an alias of zggsvd3.f(3).

Tue Nov 28 2023 12:08:42 Version 3.12.0 LAPACK