zgeqr2p.f - Man Page

SRC/zgeqr2p.f

Synopsis

Functions/Subroutines

subroutine zgeqr2p (m, n, a, lda, tau, work, info)
ZGEQR2P computes the QR factorization of a general rectangular matrix with non-negative diagonal elements using an unblocked algorithm.

Function/Subroutine Documentation

subroutine zgeqr2p (integer m, integer n, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( * ) tau, complex*16, dimension( * ) work, integer info)

ZGEQR2P computes the QR factorization of a general rectangular matrix with non-negative diagonal elements using an unblocked algorithm.  

Purpose:

 ZGEQR2P computes a QR factorization of a complex m-by-n matrix A:

    A = Q * ( R ),
            ( 0 )

 where:

    Q is a m-by-m orthogonal matrix;
    R is an upper-triangular n-by-n matrix with nonnegative diagonal
    entries;
    0 is a (m-n)-by-n zero matrix, if m > n.
Parameters

M

          M is INTEGER
          The number of rows of the matrix A.  M >= 0.

N

          N is INTEGER
          The number of columns of the matrix A.  N >= 0.

A

          A is COMPLEX*16 array, dimension (LDA,N)
          On entry, the m by n matrix A.
          On exit, the elements on and above the diagonal of the array
          contain the min(m,n) by n upper trapezoidal matrix R (R is
          upper triangular if m >= n). The diagonal entries of R
          are real and nonnegative; the elements below the diagonal,
          with the array TAU, represent the unitary matrix Q as a
          product of elementary reflectors (see Further Details).

LDA

          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,M).

TAU

          TAU is COMPLEX*16 array, dimension (min(M,N))
          The scalar factors of the elementary reflectors (see Further
          Details).

WORK

          WORK is COMPLEX*16 array, dimension (N)

INFO

          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

  The matrix Q is represented as a product of elementary reflectors

     Q = H(1) H(2) . . . H(k), where k = min(m,n).

  Each H(i) has the form

     H(i) = I - tau * v * v**H

  where tau is a complex scalar, and v is a complex vector with
  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
  and tau in TAU(i).

 See Lapack Working Note 203 for details

Definition at line 133 of file zgeqr2p.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Referenced By

The man page zgeqr2p(3) is an alias of zgeqr2p.f(3).

Tue Nov 28 2023 12:08:42 Version 3.12.0 LAPACK