zgemlq.f - Man Page

Synopsis

Functions/Subroutines

subroutine zgemlq (SIDE, TRANS, M, N, K, A, LDA, T, TSIZE, C, LDC, WORK, LWORK, INFO)
ZGEMLQ

Function/Subroutine Documentation

subroutine zgemlq (character SIDE, character TRANS, integer M, integer N, integer K, complex*16, dimension( lda, * ) A, integer LDA, complex*16, dimension( * ) T, integer TSIZE, complex*16, dimension( ldc, * ) C, integer LDC, complex*16, dimension( * ) WORK, integer LWORK, integer INFO)

ZGEMLQ

Purpose:

     ZGEMLQ overwrites the general real M-by-N matrix C with

                      SIDE = 'L'     SIDE = 'R'
      TRANS = 'N':      Q * C          C * Q
      TRANS = 'C':      Q**H * C       C * Q**H
      where Q is a complex unitary matrix defined as the product
      of blocked elementary reflectors computed by short wide
      LQ factorization (ZGELQ)
Parameters

SIDE

          SIDE is CHARACTER*1
          = 'L': apply Q or Q**T from the Left;
          = 'R': apply Q or Q**T from the Right.

TRANS

          TRANS is CHARACTER*1
          = 'N':  No transpose, apply Q;
          = 'T':  Transpose, apply Q**T.

M

          M is INTEGER
          The number of rows of the matrix A.  M >=0.

N

          N is INTEGER
          The number of columns of the matrix C. N >= 0.

K

          K is INTEGER
          The number of elementary reflectors whose product defines
          the matrix Q.
          If SIDE = 'L', M >= K >= 0;
          if SIDE = 'R', N >= K >= 0.

A

          A is COMPLEX*16 array, dimension
                               (LDA,M) if SIDE = 'L',
                               (LDA,N) if SIDE = 'R'
          Part of the data structure to represent Q as returned by ZGELQ.

LDA

          LDA is INTEGER
          The leading dimension of the array A. LDA >= max(1,K).

T

          T is COMPLEX*16 array, dimension (MAX(5,TSIZE)).
          Part of the data structure to represent Q as returned by ZGELQ.

TSIZE

          TSIZE is INTEGER
          The dimension of the array T. TSIZE >= 5.

C

          C is COMPLEX*16 array, dimension (LDC,N)
          On entry, the M-by-N matrix C.
          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.

LDC

          LDC is INTEGER
          The leading dimension of the array C. LDC >= max(1,M).

WORK

         (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK))

LWORK

          LWORK is INTEGER
          The dimension of the array WORK.
          If LWORK = -1, then a workspace query is assumed. The routine
          only calculates the size of the WORK array, returns this
          value as WORK(1), and no error message related to WORK 
          is issued by XERBLA.

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details

 These details are particular for this LAPACK implementation. Users should not 
 take them for granted. These details may change in the future, and are not likely
 true for another LAPACK implementation. These details are relevant if one wants
 to try to understand the code. They are not part of the interface.

 In this version,

          T(2): row block size (MB)
          T(3): column block size (NB)
          T(6:TSIZE): data structure needed for Q, computed by
                           ZLASWLQ or ZGELQT

  Depending on the matrix dimensions M and N, and row and column
  block sizes MB and NB returned by ILAENV, ZGELQ will use either
  ZLASWLQ (if the matrix is wide-and-short) or ZGELQT to compute
  the LQ factorization.
  This version of ZGEMLQ will use either ZLAMSWLQ or ZGEMLQT to 
  multiply matrix Q by another matrix.
  Further Details in ZLAMSWLQ or ZGEMLQT.

Definition at line 167 of file zgemlq.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Referenced By

The man page zgemlq(3) is an alias of zgemlq.f(3).

Thu Apr 1 2021 Version 3.9.1 LAPACK