# zgelqf.f - Man Page

SRC/zgelqf.f

## Synopsis

### Functions/Subroutines

subroutine **zgelqf** (m, n, a, lda, tau, work, lwork, info)**ZGELQF**

## Function/Subroutine Documentation

### subroutine zgelqf (integer m, integer n, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( * ) tau, complex*16, dimension( * ) work, integer lwork, integer info)

**ZGELQF**

**Purpose:**

ZGELQF computes an LQ factorization of a complex M-by-N matrix A: A = ( L 0 ) * Q where: Q is a N-by-N orthogonal matrix; L is a lower-triangular M-by-M matrix; 0 is a M-by-(N-M) zero matrix, if M < N.

**Parameters***M*M is INTEGER The number of rows of the matrix A. M >= 0.

*N*N is INTEGER The number of columns of the matrix A. N >= 0.

*A*A is COMPLEX*16 array, dimension (LDA,N) On entry, the M-by-N matrix A. On exit, the elements on and below the diagonal of the array contain the m-by-min(m,n) lower trapezoidal matrix L (L is lower triangular if m <= n); the elements above the diagonal, with the array TAU, represent the unitary matrix Q as a product of elementary reflectors (see Further Details).

*LDA*LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M).

*TAU*TAU is COMPLEX*16 array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details).

*WORK*WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

*LWORK*LWORK is INTEGER The dimension of the array WORK. LWORK >= max(1,M). For optimum performance LWORK >= M*NB, where NB is the optimal blocksize. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.

*INFO*INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value

**Author**Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

**Further Details:**

The matrix Q is represented as a product of elementary reflectors Q = H(k)**H . . . H(2)**H H(1)**H, where k = min(m,n). Each H(i) has the form H(i) = I - tau * v * v**H where tau is a complex scalar, and v is a complex vector with v(1:i-1) = 0 and v(i) = 1; conjg(v(i+1:n)) is stored on exit in A(i,i+1:n), and tau in TAU(i).

Definition at line **142** of file **zgelqf.f**.

## Author

Generated automatically by Doxygen for LAPACK from the source code.

## Referenced By

The man page zgelqf(3) is an alias of zgelqf.f(3).

Tue Nov 28 2023 12:08:42 Version 3.12.0 LAPACK