zgelq2.f - Man Page

SRC/zgelq2.f

Synopsis

Functions/Subroutines

subroutine zgelq2 (m, n, a, lda, tau, work, info)
ZGELQ2 computes the LQ factorization of a general rectangular matrix using an unblocked algorithm.

Function/Subroutine Documentation

subroutine zgelq2 (integer m, integer n, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( * ) tau, complex*16, dimension( * ) work, integer info)

ZGELQ2 computes the LQ factorization of a general rectangular matrix using an unblocked algorithm.  

Purpose:

 ZGELQ2 computes an LQ factorization of a complex m-by-n matrix A:

    A = ( L 0 ) *  Q

 where:

    Q is a n-by-n orthogonal matrix;
    L is a lower-triangular m-by-m matrix;
    0 is a m-by-(n-m) zero matrix, if m < n.
Parameters

M

          M is INTEGER
          The number of rows of the matrix A.  M >= 0.

N

          N is INTEGER
          The number of columns of the matrix A.  N >= 0.

A

          A is COMPLEX*16 array, dimension (LDA,N)
          On entry, the m by n matrix A.
          On exit, the elements on and below the diagonal of the array
          contain the m by min(m,n) lower trapezoidal matrix L (L is
          lower triangular if m <= n); the elements above the diagonal,
          with the array TAU, represent the unitary matrix Q as a
          product of elementary reflectors (see Further Details).

LDA

          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,M).

TAU

          TAU is COMPLEX*16 array, dimension (min(M,N))
          The scalar factors of the elementary reflectors (see Further
          Details).

WORK

          WORK is COMPLEX*16 array, dimension (M)

INFO

          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

  The matrix Q is represented as a product of elementary reflectors

     Q = H(k)**H . . . H(2)**H H(1)**H, where k = min(m,n).

  Each H(i) has the form

     H(i) = I - tau * v * v**H

  where tau is a complex scalar, and v is a complex vector with
  v(1:i-1) = 0 and v(i) = 1; conjg(v(i+1:n)) is stored on exit in
  A(i,i+1:n), and tau in TAU(i).

Definition at line 128 of file zgelq2.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Referenced By

The man page zgelq2(3) is an alias of zgelq2.f(3).

Tue Nov 28 2023 12:08:42 Version 3.12.0 LAPACK