zgbsv.f - Man Page
SRC/zgbsv.f
Synopsis
Functions/Subroutines
subroutine zgbsv (n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)
ZGBSV computes the solution to system of linear equations A * X = B for GB matrices (simple driver)
Function/Subroutine Documentation
subroutine zgbsv (integer n, integer kl, integer ku, integer nrhs, complex*16, dimension( ldab, * ) ab, integer ldab, integer, dimension( * ) ipiv, complex*16, dimension( ldb, * ) b, integer ldb, integer info)
ZGBSV computes the solution to system of linear equations A * X = B for GB matrices (simple driver)
Purpose:
ZGBSV computes the solution to a complex system of linear equations A * X = B, where A is a band matrix of order N with KL subdiagonals and KU superdiagonals, and X and B are N-by-NRHS matrices. The LU decomposition with partial pivoting and row interchanges is used to factor A as A = L * U, where L is a product of permutation and unit lower triangular matrices with KL subdiagonals, and U is upper triangular with KL+KU superdiagonals. The factored form of A is then used to solve the system of equations A * X = B.
- Parameters
N
N is INTEGER The number of linear equations, i.e., the order of the matrix A. N >= 0.
KL
KL is INTEGER The number of subdiagonals within the band of A. KL >= 0.
KU
KU is INTEGER The number of superdiagonals within the band of A. KU >= 0.
NRHS
NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0.
AB
AB is COMPLEX*16 array, dimension (LDAB,N) On entry, the matrix A in band storage, in rows KL+1 to 2*KL+KU+1; rows 1 to KL of the array need not be set. The j-th column of A is stored in the j-th column of the array AB as follows: AB(KL+KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+KL) On exit, details of the factorization: U is stored as an upper triangular band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and the multipliers used during the factorization are stored in rows KL+KU+2 to 2*KL+KU+1. See below for further details.
LDAB
LDAB is INTEGER The leading dimension of the array AB. LDAB >= 2*KL+KU+1.
IPIV
IPIV is INTEGER array, dimension (N) The pivot indices that define the permutation matrix P; row i of the matrix was interchanged with row IPIV(i).
B
B is COMPLEX*16 array, dimension (LDB,NRHS) On entry, the N-by-NRHS right hand side matrix B. On exit, if INFO = 0, the N-by-NRHS solution matrix X.
LDB
LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, U(i,i) is exactly zero. The factorization has been completed, but the factor U is exactly singular, and the solution has not been computed.
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
The band storage scheme is illustrated by the following example, when M = N = 6, KL = 2, KU = 1: On entry: On exit: * * * + + + * * * u14 u25 u36 * * + + + + * * u13 u24 u35 u46 * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56 a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66 a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65 * a31 a42 a53 a64 * * m31 m42 m53 m64 * * Array elements marked * are not used by the routine; elements marked + need not be set on entry, but are required by the routine to store elements of U because of fill-in resulting from the row interchanges.
Definition at line 161 of file zgbsv.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Referenced By
The man page zgbsv(3) is an alias of zgbsv.f(3).
Tue Nov 28 2023 12:08:42 Version 3.12.0 LAPACK