# zgbrfs.f man page

zgbrfs.f —

## Synopsis

### Functions/Subroutines

subroutinezgbrfs(TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB, IPIV, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO)ZGBRFS

## Function/Subroutine Documentation

### subroutine zgbrfs (characterTRANS, integerN, integerKL, integerKU, integerNRHS, complex*16, dimension( ldab, * )AB, integerLDAB, complex*16, dimension( ldafb, * )AFB, integerLDAFB, integer, dimension( * )IPIV, complex*16, dimension( ldb, * )B, integerLDB, complex*16, dimension( ldx, * )X, integerLDX, double precision, dimension( * )FERR, double precision, dimension( * )BERR, complex*16, dimension( * )WORK, double precision, dimension( * )RWORK, integerINFO)

**ZGBRFS**

**Purpose:**

```
ZGBRFS improves the computed solution to a system of linear
equations when the coefficient matrix is banded, and provides
error bounds and backward error estimates for the solution.
```

**Parameters:**

*TRANS*

```
TRANS is CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose)
```

*N*

```
N is INTEGER
The order of the matrix A. N >= 0.
```

*KL*

```
KL is INTEGER
The number of subdiagonals within the band of A. KL >= 0.
```

*KU*

```
KU is INTEGER
The number of superdiagonals within the band of A. KU >= 0.
```

*NRHS*

```
NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
```

*AB*

```
AB is COMPLEX*16 array, dimension (LDAB,N)
The original band matrix A, stored in rows 1 to KL+KU+1.
The j-th column of A is stored in the j-th column of the
array AB as follows:
AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).
```

*LDAB*

```
LDAB is INTEGER
The leading dimension of the array AB. LDAB >= KL+KU+1.
```

*AFB*

```
AFB is COMPLEX*16 array, dimension (LDAFB,N)
Details of the LU factorization of the band matrix A, as
computed by ZGBTRF. U is stored as an upper triangular band
matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
the multipliers used during the factorization are stored in
rows KL+KU+2 to 2*KL+KU+1.
```

*LDAFB*

```
LDAFB is INTEGER
The leading dimension of the array AFB. LDAFB >= 2*KL*KU+1.
```

*IPIV*

```
IPIV is INTEGER array, dimension (N)
The pivot indices from ZGBTRF; for 1<=i<=N, row i of the
matrix was interchanged with row IPIV(i).
```

*B*

```
B is COMPLEX*16 array, dimension (LDB,NRHS)
The right hand side matrix B.
```

*LDB*

```
LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).
```

*X*

```
X is COMPLEX*16 array, dimension (LDX,NRHS)
On entry, the solution matrix X, as computed by ZGBTRS.
On exit, the improved solution matrix X.
```

*LDX*

```
LDX is INTEGER
The leading dimension of the array X. LDX >= max(1,N).
```

*FERR*

```
FERR is DOUBLE PRECISION array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
```

*BERR*

```
BERR is DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
```

*WORK*

`WORK is COMPLEX*16 array, dimension (2*N)`

*RWORK*

`RWORK is DOUBLE PRECISION array, dimension (N)`

*INFO*

```
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
```

**Internal Parameters:**

`ITMAX is the maximum number of steps of iterative refinement.`

**Author:**

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

**Date:**

November 2011

Definition at line 205 of file zgbrfs.f.

## Author

Generated automatically by Doxygen for LAPACK from the source code.

## Referenced By

zgbrfs(3) is an alias of zgbrfs.f(3).