Sponsor:

Your company here, and a link to your site. Click to find out more.

unmtr - Man Page

{un,or}mtr: multiply by Q from hetrd

Synopsis

Functions

subroutine cunmtr (side, uplo, trans, m, n, a, lda, tau, c, ldc, work, lwork, info)
CUNMTR
subroutine dormtr (side, uplo, trans, m, n, a, lda, tau, c, ldc, work, lwork, info)
DORMTR
subroutine sormtr (side, uplo, trans, m, n, a, lda, tau, c, ldc, work, lwork, info)
SORMTR
subroutine zunmtr (side, uplo, trans, m, n, a, lda, tau, c, ldc, work, lwork, info)
ZUNMTR

Detailed Description

Function Documentation

subroutine cunmtr (character side, character uplo, character trans, integer m, integer n, complex, dimension( lda, * ) a, integer lda, complex, dimension( * ) tau, complex, dimension( ldc, * ) c, integer ldc, complex, dimension( * ) work, integer lwork, integer info)

CUNMTR  

Purpose:

 CUNMTR overwrites the general complex M-by-N matrix C with

                 SIDE = 'L'     SIDE = 'R'
 TRANS = 'N':      Q * C          C * Q
 TRANS = 'C':      Q**H * C       C * Q**H

 where Q is a complex unitary matrix of order nq, with nq = m if
 SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of
 nq-1 elementary reflectors, as returned by CHETRD:

 if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1);

 if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1).
Parameters

SIDE

          SIDE is CHARACTER*1
          = 'L': apply Q or Q**H from the Left;
          = 'R': apply Q or Q**H from the Right.

UPLO

          UPLO is CHARACTER*1
          = 'U': Upper triangle of A contains elementary reflectors
                 from CHETRD;
          = 'L': Lower triangle of A contains elementary reflectors
                 from CHETRD.

TRANS

          TRANS is CHARACTER*1
          = 'N':  No transpose, apply Q;
          = 'C':  Conjugate transpose, apply Q**H.

M

          M is INTEGER
          The number of rows of the matrix C. M >= 0.

N

          N is INTEGER
          The number of columns of the matrix C. N >= 0.

A

          A is COMPLEX array, dimension
                               (LDA,M) if SIDE = 'L'
                               (LDA,N) if SIDE = 'R'
          The vectors which define the elementary reflectors, as
          returned by CHETRD.

LDA

          LDA is INTEGER
          The leading dimension of the array A.
          LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'.

TAU

          TAU is COMPLEX array, dimension
                               (M-1) if SIDE = 'L'
                               (N-1) if SIDE = 'R'
          TAU(i) must contain the scalar factor of the elementary
          reflector H(i), as returned by CHETRD.

C

          C is COMPLEX array, dimension (LDC,N)
          On entry, the M-by-N matrix C.
          On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.

LDC

          LDC is INTEGER
          The leading dimension of the array C. LDC >= max(1,M).

WORK

          WORK is COMPLEX array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

LWORK

          LWORK is INTEGER
          The dimension of the array WORK.
          If SIDE = 'L', LWORK >= max(1,N);
          if SIDE = 'R', LWORK >= max(1,M).
          For optimum performance LWORK >= N*NB if SIDE = 'L', and
          LWORK >=M*NB if SIDE = 'R', where NB is the optimal
          blocksize.

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA.

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 170 of file cunmtr.f.

subroutine dormtr (character side, character uplo, character trans, integer m, integer n, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( * ) tau, double precision, dimension( ldc, * ) c, integer ldc, double precision, dimension( * ) work, integer lwork, integer info)

DORMTR  

Purpose:

 DORMTR overwrites the general real M-by-N matrix C with

                 SIDE = 'L'     SIDE = 'R'
 TRANS = 'N':      Q * C          C * Q
 TRANS = 'T':      Q**T * C       C * Q**T

 where Q is a real orthogonal matrix of order nq, with nq = m if
 SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of
 nq-1 elementary reflectors, as returned by DSYTRD:

 if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1);

 if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1).
Parameters

SIDE

          SIDE is CHARACTER*1
          = 'L': apply Q or Q**T from the Left;
          = 'R': apply Q or Q**T from the Right.

UPLO

          UPLO is CHARACTER*1
          = 'U': Upper triangle of A contains elementary reflectors
                 from DSYTRD;
          = 'L': Lower triangle of A contains elementary reflectors
                 from DSYTRD.

TRANS

          TRANS is CHARACTER*1
          = 'N':  No transpose, apply Q;
          = 'T':  Transpose, apply Q**T.

M

          M is INTEGER
          The number of rows of the matrix C. M >= 0.

N

          N is INTEGER
          The number of columns of the matrix C. N >= 0.

A

          A is DOUBLE PRECISION array, dimension
                               (LDA,M) if SIDE = 'L'
                               (LDA,N) if SIDE = 'R'
          The vectors which define the elementary reflectors, as
          returned by DSYTRD.

LDA

          LDA is INTEGER
          The leading dimension of the array A.
          LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'.

TAU

          TAU is DOUBLE PRECISION array, dimension
                               (M-1) if SIDE = 'L'
                               (N-1) if SIDE = 'R'
          TAU(i) must contain the scalar factor of the elementary
          reflector H(i), as returned by DSYTRD.

C

          C is DOUBLE PRECISION array, dimension (LDC,N)
          On entry, the M-by-N matrix C.
          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.

LDC

          LDC is INTEGER
          The leading dimension of the array C. LDC >= max(1,M).

WORK

          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

LWORK

          LWORK is INTEGER
          The dimension of the array WORK.
          If SIDE = 'L', LWORK >= max(1,N);
          if SIDE = 'R', LWORK >= max(1,M).
          For optimum performance LWORK >= N*NB if SIDE = 'L', and
          LWORK >= M*NB if SIDE = 'R', where NB is the optimal
          blocksize.

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA.

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 169 of file dormtr.f.

subroutine sormtr (character side, character uplo, character trans, integer m, integer n, real, dimension( lda, * ) a, integer lda, real, dimension( * ) tau, real, dimension( ldc, * ) c, integer ldc, real, dimension( * ) work, integer lwork, integer info)

SORMTR  

Purpose:

 SORMTR overwrites the general real M-by-N matrix C with

                 SIDE = 'L'     SIDE = 'R'
 TRANS = 'N':      Q * C          C * Q
 TRANS = 'T':      Q**T * C       C * Q**T

 where Q is a real orthogonal matrix of order nq, with nq = m if
 SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of
 nq-1 elementary reflectors, as returned by SSYTRD:

 if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1);

 if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1).
Parameters

SIDE

          SIDE is CHARACTER*1
          = 'L': apply Q or Q**T from the Left;
          = 'R': apply Q or Q**T from the Right.

UPLO

          UPLO is CHARACTER*1
          = 'U': Upper triangle of A contains elementary reflectors
                 from SSYTRD;
          = 'L': Lower triangle of A contains elementary reflectors
                 from SSYTRD.

TRANS

          TRANS is CHARACTER*1
          = 'N':  No transpose, apply Q;
          = 'T':  Transpose, apply Q**T.

M

          M is INTEGER
          The number of rows of the matrix C. M >= 0.

N

          N is INTEGER
          The number of columns of the matrix C. N >= 0.

A

          A is REAL array, dimension
                               (LDA,M) if SIDE = 'L'
                               (LDA,N) if SIDE = 'R'
          The vectors which define the elementary reflectors, as
          returned by SSYTRD.

LDA

          LDA is INTEGER
          The leading dimension of the array A.
          LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'.

TAU

          TAU is REAL array, dimension
                               (M-1) if SIDE = 'L'
                               (N-1) if SIDE = 'R'
          TAU(i) must contain the scalar factor of the elementary
          reflector H(i), as returned by SSYTRD.

C

          C is REAL array, dimension (LDC,N)
          On entry, the M-by-N matrix C.
          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.

LDC

          LDC is INTEGER
          The leading dimension of the array C. LDC >= max(1,M).

WORK

          WORK is REAL array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

LWORK

          LWORK is INTEGER
          The dimension of the array WORK.
          If SIDE = 'L', LWORK >= max(1,N);
          if SIDE = 'R', LWORK >= max(1,M).
          For optimum performance LWORK >= N*NB if SIDE = 'L', and
          LWORK >= M*NB if SIDE = 'R', where NB is the optimal
          blocksize.

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA.

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 170 of file sormtr.f.

subroutine zunmtr (character side, character uplo, character trans, integer m, integer n, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( * ) tau, complex*16, dimension( ldc, * ) c, integer ldc, complex*16, dimension( * ) work, integer lwork, integer info)

ZUNMTR  

Purpose:

 ZUNMTR overwrites the general complex M-by-N matrix C with

                 SIDE = 'L'     SIDE = 'R'
 TRANS = 'N':      Q * C          C * Q
 TRANS = 'C':      Q**H * C       C * Q**H

 where Q is a complex unitary matrix of order nq, with nq = m if
 SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of
 nq-1 elementary reflectors, as returned by ZHETRD:

 if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1);

 if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1).
Parameters

SIDE

          SIDE is CHARACTER*1
          = 'L': apply Q or Q**H from the Left;
          = 'R': apply Q or Q**H from the Right.

UPLO

          UPLO is CHARACTER*1
          = 'U': Upper triangle of A contains elementary reflectors
                 from ZHETRD;
          = 'L': Lower triangle of A contains elementary reflectors
                 from ZHETRD.

TRANS

          TRANS is CHARACTER*1
          = 'N':  No transpose, apply Q;
          = 'C':  Conjugate transpose, apply Q**H.

M

          M is INTEGER
          The number of rows of the matrix C. M >= 0.

N

          N is INTEGER
          The number of columns of the matrix C. N >= 0.

A

          A is COMPLEX*16 array, dimension
                               (LDA,M) if SIDE = 'L'
                               (LDA,N) if SIDE = 'R'
          The vectors which define the elementary reflectors, as
          returned by ZHETRD.

LDA

          LDA is INTEGER
          The leading dimension of the array A.
          LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'.

TAU

          TAU is COMPLEX*16 array, dimension
                               (M-1) if SIDE = 'L'
                               (N-1) if SIDE = 'R'
          TAU(i) must contain the scalar factor of the elementary
          reflector H(i), as returned by ZHETRD.

C

          C is COMPLEX*16 array, dimension (LDC,N)
          On entry, the M-by-N matrix C.
          On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.

LDC

          LDC is INTEGER
          The leading dimension of the array C. LDC >= max(1,M).

WORK

          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

LWORK

          LWORK is INTEGER
          The dimension of the array WORK.
          If SIDE = 'L', LWORK >= max(1,N);
          if SIDE = 'R', LWORK >= max(1,M).
          For optimum performance LWORK >= N*NB if SIDE = 'L', and
          LWORK >=M*NB if SIDE = 'R', where NB is the optimal
          blocksize.

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA.

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 169 of file zunmtr.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Info

Tue Nov 28 2023 12:08:43 Version 3.12.0 LAPACK