# tprfs - Man Page

tprfs: triangular iterative refinement

## Synopsis

### Functions

subroutine **ctprfs** (uplo, trans, diag, n, nrhs, ap, b, ldb, x, ldx, ferr, berr, work, rwork, info)**CTPRFS**

subroutine **dtprfs** (uplo, trans, diag, n, nrhs, ap, b, ldb, x, ldx, ferr, berr, work, iwork, info)**DTPRFS**

subroutine **stprfs** (uplo, trans, diag, n, nrhs, ap, b, ldb, x, ldx, ferr, berr, work, iwork, info)**STPRFS**

subroutine **ztprfs** (uplo, trans, diag, n, nrhs, ap, b, ldb, x, ldx, ferr, berr, work, rwork, info)**ZTPRFS**

## Detailed Description

## Function Documentation

### subroutine ctprfs (character uplo, character trans, character diag, integer n, integer nrhs, complex, dimension( * ) ap, complex, dimension( ldb, * ) b, integer ldb, complex, dimension( ldx, * ) x, integer ldx, real, dimension( * ) ferr, real, dimension( * ) berr, complex, dimension( * ) work, real, dimension( * ) rwork, integer info)

**CTPRFS**

**Purpose:**

CTPRFS provides error bounds and backward error estimates for the solution to a system of linear equations with a triangular packed coefficient matrix. The solution matrix X must be computed by CTPTRS or some other means before entering this routine. CTPRFS does not do iterative refinement because doing so cannot improve the backward error.

**Parameters***UPLO*UPLO is CHARACTER*1 = 'U': A is upper triangular; = 'L': A is lower triangular.

*TRANS*TRANS is CHARACTER*1 Specifies the form of the system of equations: = 'N': A * X = B (No transpose) = 'T': A**T * X = B (Transpose) = 'C': A**H * X = B (Conjugate transpose)

*DIAG*DIAG is CHARACTER*1 = 'N': A is non-unit triangular; = 'U': A is unit triangular.

*N*N is INTEGER The order of the matrix A. N >= 0.

*NRHS*NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrices B and X. NRHS >= 0.

*AP*AP is COMPLEX array, dimension (N*(N+1)/2) The upper or lower triangular matrix A, packed columnwise in a linear array. The j-th column of A is stored in the array AP as follows: if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. If DIAG = 'U', the diagonal elements of A are not referenced and are assumed to be 1.

*B*B is COMPLEX array, dimension (LDB,NRHS) The right hand side matrix B.

*LDB*LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).

*X*X is COMPLEX array, dimension (LDX,NRHS) The solution matrix X.

*LDX*LDX is INTEGER The leading dimension of the array X. LDX >= max(1,N).

*FERR*FERR is REAL array, dimension (NRHS) The estimated forward error bound for each solution vector X(j) (the j-th column of the solution matrix X). If XTRUE is the true solution corresponding to X(j), FERR(j) is an estimated upper bound for the magnitude of the largest element in (X(j) - XTRUE) divided by the magnitude of the largest element in X(j). The estimate is as reliable as the estimate for RCOND, and is almost always a slight overestimate of the true error.

*BERR*BERR is REAL array, dimension (NRHS) The componentwise relative backward error of each solution vector X(j) (i.e., the smallest relative change in any element of A or B that makes X(j) an exact solution).

*WORK*WORK is COMPLEX array, dimension (2*N)

*RWORK*RWORK is REAL array, dimension (N)

*INFO*INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value

**Author**Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line **172** of file **ctprfs.f**.

### subroutine dtprfs (character uplo, character trans, character diag, integer n, integer nrhs, double precision, dimension( * ) ap, double precision, dimension( ldb, * ) b, integer ldb, double precision, dimension( ldx, * ) x, integer ldx, double precision, dimension( * ) ferr, double precision, dimension( * ) berr, double precision, dimension( * ) work, integer, dimension( * ) iwork, integer info)

**DTPRFS**

**Purpose:**

DTPRFS provides error bounds and backward error estimates for the solution to a system of linear equations with a triangular packed coefficient matrix. The solution matrix X must be computed by DTPTRS or some other means before entering this routine. DTPRFS does not do iterative refinement because doing so cannot improve the backward error.

**Parameters***UPLO*UPLO is CHARACTER*1 = 'U': A is upper triangular; = 'L': A is lower triangular.

*TRANS*TRANS is CHARACTER*1 Specifies the form of the system of equations: = 'N': A * X = B (No transpose) = 'T': A**T * X = B (Transpose) = 'C': A**H * X = B (Conjugate transpose = Transpose)

*DIAG*DIAG is CHARACTER*1 = 'N': A is non-unit triangular; = 'U': A is unit triangular.

*N*N is INTEGER The order of the matrix A. N >= 0.

*NRHS*NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrices B and X. NRHS >= 0.

*AP*AP is DOUBLE PRECISION array, dimension (N*(N+1)/2) The upper or lower triangular matrix A, packed columnwise in a linear array. The j-th column of A is stored in the array AP as follows: if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. If DIAG = 'U', the diagonal elements of A are not referenced and are assumed to be 1.

*B*B is DOUBLE PRECISION array, dimension (LDB,NRHS) The right hand side matrix B.

*LDB*LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).

*X*X is DOUBLE PRECISION array, dimension (LDX,NRHS) The solution matrix X.

*LDX*LDX is INTEGER The leading dimension of the array X. LDX >= max(1,N).

*FERR*FERR is DOUBLE PRECISION array, dimension (NRHS) The estimated forward error bound for each solution vector X(j) (the j-th column of the solution matrix X). If XTRUE is the true solution corresponding to X(j), FERR(j) is an estimated upper bound for the magnitude of the largest element in (X(j) - XTRUE) divided by the magnitude of the largest element in X(j). The estimate is as reliable as the estimate for RCOND, and is almost always a slight overestimate of the true error.

*BERR*BERR is DOUBLE PRECISION array, dimension (NRHS) The componentwise relative backward error of each solution vector X(j) (i.e., the smallest relative change in any element of A or B that makes X(j) an exact solution).

*WORK*WORK is DOUBLE PRECISION array, dimension (3*N)

*IWORK*IWORK is INTEGER array, dimension (N)

*INFO*INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value

**Author**Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line **173** of file **dtprfs.f**.

### subroutine stprfs (character uplo, character trans, character diag, integer n, integer nrhs, real, dimension( * ) ap, real, dimension( ldb, * ) b, integer ldb, real, dimension( ldx, * ) x, integer ldx, real, dimension( * ) ferr, real, dimension( * ) berr, real, dimension( * ) work, integer, dimension( * ) iwork, integer info)

**STPRFS**

**Purpose:**

STPRFS provides error bounds and backward error estimates for the solution to a system of linear equations with a triangular packed coefficient matrix. The solution matrix X must be computed by STPTRS or some other means before entering this routine. STPRFS does not do iterative refinement because doing so cannot improve the backward error.

**Parameters***UPLO*UPLO is CHARACTER*1 = 'U': A is upper triangular; = 'L': A is lower triangular.

*TRANS*TRANS is CHARACTER*1 Specifies the form of the system of equations: = 'N': A * X = B (No transpose) = 'T': A**T * X = B (Transpose) = 'C': A**H * X = B (Conjugate transpose = Transpose)

*DIAG*DIAG is CHARACTER*1 = 'N': A is non-unit triangular; = 'U': A is unit triangular.

*N*N is INTEGER The order of the matrix A. N >= 0.

*NRHS*NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrices B and X. NRHS >= 0.

*AP*AP is REAL array, dimension (N*(N+1)/2) The upper or lower triangular matrix A, packed columnwise in a linear array. The j-th column of A is stored in the array AP as follows: if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. If DIAG = 'U', the diagonal elements of A are not referenced and are assumed to be 1.

*B*B is REAL array, dimension (LDB,NRHS) The right hand side matrix B.

*LDB*LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).

*X*X is REAL array, dimension (LDX,NRHS) The solution matrix X.

*LDX*LDX is INTEGER The leading dimension of the array X. LDX >= max(1,N).

*FERR*FERR is REAL array, dimension (NRHS) The estimated forward error bound for each solution vector X(j) (the j-th column of the solution matrix X). If XTRUE is the true solution corresponding to X(j), FERR(j) is an estimated upper bound for the magnitude of the largest element in (X(j) - XTRUE) divided by the magnitude of the largest element in X(j). The estimate is as reliable as the estimate for RCOND, and is almost always a slight overestimate of the true error.

*BERR*BERR is REAL array, dimension (NRHS) The componentwise relative backward error of each solution vector X(j) (i.e., the smallest relative change in any element of A or B that makes X(j) an exact solution).

*WORK*WORK is REAL array, dimension (3*N)

*IWORK*IWORK is INTEGER array, dimension (N)

*INFO*INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value

**Author**Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line **173** of file **stprfs.f**.

### subroutine ztprfs (character uplo, character trans, character diag, integer n, integer nrhs, complex*16, dimension( * ) ap, complex*16, dimension( ldb, * ) b, integer ldb, complex*16, dimension( ldx, * ) x, integer ldx, double precision, dimension( * ) ferr, double precision, dimension( * ) berr, complex*16, dimension( * ) work, double precision, dimension( * ) rwork, integer info)

**ZTPRFS**

**Purpose:**

ZTPRFS provides error bounds and backward error estimates for the solution to a system of linear equations with a triangular packed coefficient matrix. The solution matrix X must be computed by ZTPTRS or some other means before entering this routine. ZTPRFS does not do iterative refinement because doing so cannot improve the backward error.

**Parameters***UPLO*UPLO is CHARACTER*1 = 'U': A is upper triangular; = 'L': A is lower triangular.

*TRANS*TRANS is CHARACTER*1 Specifies the form of the system of equations: = 'N': A * X = B (No transpose) = 'T': A**T * X = B (Transpose) = 'C': A**H * X = B (Conjugate transpose)

*DIAG*DIAG is CHARACTER*1 = 'N': A is non-unit triangular; = 'U': A is unit triangular.

*N*N is INTEGER The order of the matrix A. N >= 0.

*NRHS**AP*AP is COMPLEX*16 array, dimension (N*(N+1)/2) The upper or lower triangular matrix A, packed columnwise in a linear array. The j-th column of A is stored in the array AP as follows: if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. If DIAG = 'U', the diagonal elements of A are not referenced and are assumed to be 1.

*B*B is COMPLEX*16 array, dimension (LDB,NRHS) The right hand side matrix B.

*LDB*LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).

*X*X is COMPLEX*16 array, dimension (LDX,NRHS) The solution matrix X.

*LDX*LDX is INTEGER The leading dimension of the array X. LDX >= max(1,N).

*FERR*FERR is DOUBLE PRECISION array, dimension (NRHS) The estimated forward error bound for each solution vector X(j) (the j-th column of the solution matrix X). If XTRUE is the true solution corresponding to X(j), FERR(j) is an estimated upper bound for the magnitude of the largest element in (X(j) - XTRUE) divided by the magnitude of the largest element in X(j). The estimate is as reliable as the estimate for RCOND, and is almost always a slight overestimate of the true error.

*BERR*BERR is DOUBLE PRECISION array, dimension (NRHS) The componentwise relative backward error of each solution vector X(j) (i.e., the smallest relative change in any element of A or B that makes X(j) an exact solution).

*WORK*WORK is COMPLEX*16 array, dimension (2*N)

*RWORK*RWORK is DOUBLE PRECISION array, dimension (N)

*INFO*INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value

**Author**Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line **172** of file **ztprfs.f**.

## Author

Generated automatically by Doxygen for LAPACK from the source code.