ssysv_aa_2stage.f - Man Page
SRC/ssysv_aa_2stage.f
Synopsis
Functions/Subroutines
subroutine ssysv_aa_2stage (uplo, n, nrhs, a, lda, tb, ltb, ipiv, ipiv2, b, ldb, work, lwork, info)
SSYSV_AA_2STAGE computes the solution to system of linear equations A * X = B for SY matrices
Function/Subroutine Documentation
subroutine ssysv_aa_2stage (character uplo, integer n, integer nrhs, real, dimension( lda, * ) a, integer lda, real, dimension( * ) tb, integer ltb, integer, dimension( * ) ipiv, integer, dimension( * ) ipiv2, real, dimension( ldb, * ) b, integer ldb, real, dimension( * ) work, integer lwork, integer info)
SSYSV_AA_2STAGE computes the solution to system of linear equations A * X = B for SY matrices
Purpose:
SSYSV_AA_2STAGE computes the solution to a real system of linear equations A * X = B, where A is an N-by-N symmetric matrix and X and B are N-by-NRHS matrices. Aasen's 2-stage algorithm is used to factor A as A = U**T * T * U, if UPLO = 'U', or A = L * T * L**T, if UPLO = 'L', where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and T is symmetric and band. The matrix T is then LU-factored with partial pivoting. The factored form of A is then used to solve the system of equations A * X = B. This is the blocked version of the algorithm, calling Level 3 BLAS.
- Parameters
UPLO
UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored.
N
N is INTEGER The order of the matrix A. N >= 0.
NRHS
NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0.
A
A is REAL array, dimension (LDA,N) On entry, the symmetric matrix A. If UPLO = 'U', the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit, L is stored below (or above) the subdiagonal blocks, when UPLO is 'L' (or 'U').
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).
TB
TB is REAL array, dimension (LTB) On exit, details of the LU factorization of the band matrix.
LTB
LTB is INTEGER The size of the array TB. LTB >= 4*N, internally used to select NB such that LTB >= (3*NB+1)*N. If LTB = -1, then a workspace query is assumed; the routine only calculates the optimal size of LTB, returns this value as the first entry of TB, and no error message related to LTB is issued by XERBLA.
IPIV
IPIV is INTEGER array, dimension (N) On exit, it contains the details of the interchanges, i.e., the row and column k of A were interchanged with the row and column IPIV(k).
IPIV2
IPIV2 is INTEGER array, dimension (N) On exit, it contains the details of the interchanges, i.e., the row and column k of T were interchanged with the row and column IPIV(k).
B
B is REAL array, dimension (LDB,NRHS) On entry, the right hand side matrix B. On exit, the solution matrix X.
LDB
LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).
WORK
WORK is REAL workspace of size LWORK
LWORK
LWORK is INTEGER The size of WORK. LWORK >= N, internally used to select NB such that LWORK >= N*NB. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value. > 0: if INFO = i, band LU factorization failed on i-th column
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 184 of file ssysv_aa_2stage.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Referenced By
The man page ssysv_aa_2stage(3) is an alias of ssysv_aa_2stage.f(3).
Tue Nov 28 2023 12:08:42 Version 3.12.0 LAPACK