ssyrfs.f - Man Page
SRC/ssyrfs.f
Synopsis
Functions/Subroutines
subroutine ssyrfs (uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr, berr, work, iwork, info)
SSYRFS
Function/Subroutine Documentation
subroutine ssyrfs (character uplo, integer n, integer nrhs, real, dimension( lda, * ) a, integer lda, real, dimension( ldaf, * ) af, integer ldaf, integer, dimension( * ) ipiv, real, dimension( ldb, * ) b, integer ldb, real, dimension( ldx, * ) x, integer ldx, real, dimension( * ) ferr, real, dimension( * ) berr, real, dimension( * ) work, integer, dimension( * ) iwork, integer info)
SSYRFS
Purpose:
SSYRFS improves the computed solution to a system of linear equations when the coefficient matrix is symmetric indefinite, and provides error bounds and backward error estimates for the solution.
- Parameters
UPLO
UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored.
N
N is INTEGER The order of the matrix A. N >= 0.
NRHS
NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrices B and X. NRHS >= 0.
A
A is REAL array, dimension (LDA,N) The symmetric matrix A. If UPLO = 'U', the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced.
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).
AF
AF is REAL array, dimension (LDAF,N) The factored form of the matrix A. AF contains the block diagonal matrix D and the multipliers used to obtain the factor U or L from the factorization A = U*D*U**T or A = L*D*L**T as computed by SSYTRF.
LDAF
LDAF is INTEGER The leading dimension of the array AF. LDAF >= max(1,N).
IPIV
IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by SSYTRF.
B
B is REAL array, dimension (LDB,NRHS) The right hand side matrix B.
LDB
LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).
X
X is REAL array, dimension (LDX,NRHS) On entry, the solution matrix X, as computed by SSYTRS. On exit, the improved solution matrix X.
LDX
LDX is INTEGER The leading dimension of the array X. LDX >= max(1,N).
FERR
FERR is REAL array, dimension (NRHS) The estimated forward error bound for each solution vector X(j) (the j-th column of the solution matrix X). If XTRUE is the true solution corresponding to X(j), FERR(j) is an estimated upper bound for the magnitude of the largest element in (X(j) - XTRUE) divided by the magnitude of the largest element in X(j). The estimate is as reliable as the estimate for RCOND, and is almost always a slight overestimate of the true error.
BERR
BERR is REAL array, dimension (NRHS) The componentwise relative backward error of each solution vector X(j) (i.e., the smallest relative change in any element of A or B that makes X(j) an exact solution).
WORK
WORK is REAL array, dimension (3*N)
IWORK
IWORK is INTEGER array, dimension (N)
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value
Internal Parameters:
ITMAX is the maximum number of steps of iterative refinement.
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 189 of file ssyrfs.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Referenced By
The man page ssyrfs(3) is an alias of ssyrfs.f(3).
Tue Nov 28 2023 12:08:42 Version 3.12.0 LAPACK