ssyrfs.f - Man Page

Synopsis

Functions/Subroutines

subroutine ssyrfs (UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO)
SSYRFS

Function/Subroutine Documentation

subroutine ssyrfs (character UPLO, integer N, integer NRHS, real, dimension( lda, * ) A, integer LDA, real, dimension( ldaf, * ) AF, integer LDAF, integer, dimension( * ) IPIV, real, dimension( ldb, * ) B, integer LDB, real, dimension( ldx, * ) X, integer LDX, real, dimension( * ) FERR, real, dimension( * ) BERR, real, dimension( * ) WORK, integer, dimension( * ) IWORK, integer INFO)

SSYRFS

Purpose:

``` SSYRFS improves the computed solution to a system of linear
equations when the coefficient matrix is symmetric indefinite, and
provides error bounds and backward error estimates for the solution.```
Parameters:

UPLO

```          UPLO is CHARACTER*1
= 'U':  Upper triangle of A is stored;
= 'L':  Lower triangle of A is stored.```

N

```          N is INTEGER
The order of the matrix A.  N >= 0.```

NRHS

```          NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X.  NRHS >= 0.```

A

```          A is REAL array, dimension (LDA,N)
The symmetric matrix A.  If UPLO = 'U', the leading N-by-N
upper triangular part of A contains the upper triangular part
of the matrix A, and the strictly lower triangular part of A
is not referenced.  If UPLO = 'L', the leading N-by-N lower
triangular part of A contains the lower triangular part of
the matrix A, and the strictly upper triangular part of A is
not referenced.```

LDA

```          LDA is INTEGER
The leading dimension of the array A.  LDA >= max(1,N).```

AF

```          AF is REAL array, dimension (LDAF,N)
The factored form of the matrix A.  AF contains the block
diagonal matrix D and the multipliers used to obtain the
factor U or L from the factorization A = U*D*U**T or
A = L*D*L**T as computed by SSYTRF.```

LDAF

```          LDAF is INTEGER
The leading dimension of the array AF.  LDAF >= max(1,N).```

IPIV

```          IPIV is INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by SSYTRF.```

B

```          B is REAL array, dimension (LDB,NRHS)
The right hand side matrix B.```

LDB

```          LDB is INTEGER
The leading dimension of the array B.  LDB >= max(1,N).```

X

```          X is REAL array, dimension (LDX,NRHS)
On entry, the solution matrix X, as computed by SSYTRS.
On exit, the improved solution matrix X.```

LDX

```          LDX is INTEGER
The leading dimension of the array X.  LDX >= max(1,N).```

FERR

```          FERR is REAL array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j).  The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.```

BERR

```          BERR is REAL array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).```

WORK

`          WORK is REAL array, dimension (3*N)`

IWORK

`          IWORK is INTEGER array, dimension (N)`

INFO

```          INFO is INTEGER
= 0:  successful exit
< 0:  if INFO = -i, the i-th argument had an illegal value```

Internal Parameters:

`  ITMAX is the maximum number of steps of iterative refinement.`
Author:

Univ. of Tennessee

Univ. of California Berkeley

NAG Ltd.

Date:

December 2016

Definition at line 193 of file ssyrfs.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Referenced By

The man page ssyrfs(3) is an alias of ssyrfs.f(3).

Tue Nov 14 2017 Version 3.8.0 LAPACK