ssygv.f man page

ssygv.f

Synopsis

Functions/Subroutines

subroutine ssygv (ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK, LWORK, INFO)
SSYGV

Function/Subroutine Documentation

subroutine ssygv (integer ITYPE, character JOBZ, character UPLO, integer N, real, dimension( lda, * ) A, integer LDA, real, dimension( ldb, * ) B, integer LDB, real, dimension( * ) W, real, dimension( * ) WORK, integer LWORK, integer INFO)

SSYGV  

Purpose:

 SSYGV computes all the eigenvalues, and optionally, the eigenvectors
 of a real generalized symmetric-definite eigenproblem, of the form
 A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.
 Here A and B are assumed to be symmetric and B is also
 positive definite.
Parameters:

ITYPE

          ITYPE is INTEGER
          Specifies the problem type to be solved:
          = 1:  A*x = (lambda)*B*x
          = 2:  A*B*x = (lambda)*x
          = 3:  B*A*x = (lambda)*x

JOBZ

          JOBZ is CHARACTER*1
          = 'N':  Compute eigenvalues only;
          = 'V':  Compute eigenvalues and eigenvectors.

UPLO

          UPLO is CHARACTER*1
          = 'U':  Upper triangles of A and B are stored;
          = 'L':  Lower triangles of A and B are stored.

N

          N is INTEGER
          The order of the matrices A and B.  N >= 0.

A

          A is REAL array, dimension (LDA, N)
          On entry, the symmetric matrix A.  If UPLO = 'U', the
          leading N-by-N upper triangular part of A contains the
          upper triangular part of the matrix A.  If UPLO = 'L',
          the leading N-by-N lower triangular part of A contains
          the lower triangular part of the matrix A.

          On exit, if JOBZ = 'V', then if INFO = 0, A contains the
          matrix Z of eigenvectors.  The eigenvectors are normalized
          as follows:
          if ITYPE = 1 or 2, Z**T*B*Z = I;
          if ITYPE = 3, Z**T*inv(B)*Z = I.
          If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
          or the lower triangle (if UPLO='L') of A, including the
          diagonal, is destroyed.

LDA

          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).

B

          B is REAL array, dimension (LDB, N)
          On entry, the symmetric positive definite matrix B.
          If UPLO = 'U', the leading N-by-N upper triangular part of B
          contains the upper triangular part of the matrix B.
          If UPLO = 'L', the leading N-by-N lower triangular part of B
          contains the lower triangular part of the matrix B.

          On exit, if INFO <= N, the part of B containing the matrix is
          overwritten by the triangular factor U or L from the Cholesky
          factorization B = U**T*U or B = L*L**T.

LDB

          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).

W

          W is REAL array, dimension (N)
          If INFO = 0, the eigenvalues in ascending order.

WORK

          WORK is REAL array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

LWORK

          LWORK is INTEGER
          The length of the array WORK.  LWORK >= max(1,3*N-1).
          For optimal efficiency, LWORK >= (NB+2)*N,
          where NB is the blocksize for SSYTRD returned by ILAENV.

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA.

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  SPOTRF or SSYEV returned an error code:
             <= N:  if INFO = i, SSYEV failed to converge;
                    i off-diagonal elements of an intermediate
                    tridiagonal form did not converge to zero;
             > N:   if INFO = N + i, for 1 <= i <= N, then the leading
                    minor of order i of B is not positive definite.
                    The factorization of B could not be completed and
                    no eigenvalues or eigenvectors were computed.
Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

December 2016

Definition at line 177 of file ssygv.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Referenced By

The man page ssygv(3) is an alias of ssygv.f(3).

Tue Nov 14 2017 Version 3.8.0 LAPACK