# ssygv.f man page

ssygv.f

## Synopsis

### Functions/Subroutines

subroutine ssygv (ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK, LWORK, INFO)
SSYGV

## Function/Subroutine Documentation

### subroutine ssygv (integer ITYPE, character JOBZ, character UPLO, integer N, real, dimension( lda, * ) A, integer LDA, real, dimension( ldb, * ) B, integer LDB, real, dimension( * ) W, real, dimension( * ) WORK, integer LWORK, integer INFO)

SSYGV

Purpose:

``` SSYGV computes all the eigenvalues, and optionally, the eigenvectors
of a real generalized symmetric-definite eigenproblem, of the form
A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.
Here A and B are assumed to be symmetric and B is also
positive definite.```
Parameters:

ITYPE

```          ITYPE is INTEGER
Specifies the problem type to be solved:
= 1:  A*x = (lambda)*B*x
= 2:  A*B*x = (lambda)*x
= 3:  B*A*x = (lambda)*x```

JOBZ

```          JOBZ is CHARACTER*1
= 'N':  Compute eigenvalues only;
= 'V':  Compute eigenvalues and eigenvectors.```

UPLO

```          UPLO is CHARACTER*1
= 'U':  Upper triangles of A and B are stored;
= 'L':  Lower triangles of A and B are stored.```

N

```          N is INTEGER
The order of the matrices A and B.  N >= 0.```

A

```          A is REAL array, dimension (LDA, N)
On entry, the symmetric matrix A.  If UPLO = 'U', the
leading N-by-N upper triangular part of A contains the
upper triangular part of the matrix A.  If UPLO = 'L',
the leading N-by-N lower triangular part of A contains
the lower triangular part of the matrix A.

On exit, if JOBZ = 'V', then if INFO = 0, A contains the
matrix Z of eigenvectors.  The eigenvectors are normalized
as follows:
if ITYPE = 1 or 2, Z**T*B*Z = I;
if ITYPE = 3, Z**T*inv(B)*Z = I.
If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
or the lower triangle (if UPLO='L') of A, including the
diagonal, is destroyed.```

LDA

```          LDA is INTEGER
The leading dimension of the array A.  LDA >= max(1,N).```

B

```          B is REAL array, dimension (LDB, N)
On entry, the symmetric positive definite matrix B.
If UPLO = 'U', the leading N-by-N upper triangular part of B
contains the upper triangular part of the matrix B.
If UPLO = 'L', the leading N-by-N lower triangular part of B
contains the lower triangular part of the matrix B.

On exit, if INFO <= N, the part of B containing the matrix is
overwritten by the triangular factor U or L from the Cholesky
factorization B = U**T*U or B = L*L**T.```

LDB

```          LDB is INTEGER
The leading dimension of the array B.  LDB >= max(1,N).```

W

```          W is REAL array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.```

WORK

```          WORK is REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.```

LWORK

```          LWORK is INTEGER
The length of the array WORK.  LWORK >= max(1,3*N-1).
For optimal efficiency, LWORK >= (NB+2)*N,
where NB is the blocksize for SSYTRD returned by ILAENV.

If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.```

INFO

```          INFO is INTEGER
= 0:  successful exit
< 0:  if INFO = -i, the i-th argument had an illegal value
> 0:  SPOTRF or SSYEV returned an error code:
<= N:  if INFO = i, SSYEV failed to converge;
i off-diagonal elements of an intermediate
tridiagonal form did not converge to zero;
> N:   if INFO = N + i, for 1 <= i <= N, then the leading
minor of order i of B is not positive definite.
The factorization of B could not be completed and
no eigenvalues or eigenvectors were computed.```
Author:

Univ. of Tennessee

Univ. of California Berkeley

NAG Ltd.

Date:

December 2016

Definition at line 177 of file ssygv.f.

## Author

Generated automatically by Doxygen for LAPACK from the source code.

## Referenced By

The man page ssygv(3) is an alias of ssygv.f(3).

Tue Nov 14 2017 Version 3.8.0 LAPACK