# sspgvd.f man page

sspgvd.f —

## Synopsis

### Functions/Subroutines

subroutinesspgvd(ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK, LWORK, IWORK, LIWORK, INFO)SSPGST

## Function/Subroutine Documentation

### subroutine sspgvd (integerITYPE, characterJOBZ, characterUPLO, integerN, real, dimension( * )AP, real, dimension( * )BP, real, dimension( * )W, real, dimension( ldz, * )Z, integerLDZ, real, dimension( * )WORK, integerLWORK, integer, dimension( * )IWORK, integerLIWORK, integerINFO)

**SSPGST**

**Purpose:**

```
SSPGVD computes all the eigenvalues, and optionally, the eigenvectors
of a real generalized symmetric-definite eigenproblem, of the form
A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and
B are assumed to be symmetric, stored in packed format, and B is also
positive definite.
If eigenvectors are desired, it uses a divide and conquer algorithm.
The divide and conquer algorithm makes very mild assumptions about
floating point arithmetic. It will work on machines with a guard
digit in add/subtract, or on those binary machines without guard
digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
Cray-2. It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.
```

**Parameters:**

*ITYPE*

```
ITYPE is INTEGER
Specifies the problem type to be solved:
= 1: A*x = (lambda)*B*x
= 2: A*B*x = (lambda)*x
= 3: B*A*x = (lambda)*x
```

*JOBZ*

```
JOBZ is CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
```

*UPLO*

```
UPLO is CHARACTER*1
= 'U': Upper triangles of A and B are stored;
= 'L': Lower triangles of A and B are stored.
```

*N*

```
N is INTEGER
The order of the matrices A and B. N >= 0.
```

*AP*

```
AP is REAL array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
On exit, the contents of AP are destroyed.
```

*BP*

```
BP is REAL array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
B, packed columnwise in a linear array. The j-th column of B
is stored in the array BP as follows:
if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
On exit, the triangular factor U or L from the Cholesky
factorization B = U**T*U or B = L*L**T, in the same storage
format as B.
```

*W*

```
W is REAL array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
```

*Z*

```
Z is REAL array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
eigenvectors. The eigenvectors are normalized as follows:
if ITYPE = 1 or 2, Z**T*B*Z = I;
if ITYPE = 3, Z**T*inv(B)*Z = I.
If JOBZ = 'N', then Z is not referenced.
```

*LDZ*

```
LDZ is INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
```

*WORK*

```
WORK is REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the required LWORK.
```

*LWORK*

```
LWORK is INTEGER
The dimension of the array WORK.
If N <= 1, LWORK >= 1.
If JOBZ = 'N' and N > 1, LWORK >= 2*N.
If JOBZ = 'V' and N > 1, LWORK >= 1 + 6*N + 2*N**2.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the required sizes of the WORK and IWORK
arrays, returns these values as the first entries of the WORK
and IWORK arrays, and no error message related to LWORK or
LIWORK is issued by XERBLA.
```

*IWORK*

```
IWORK is INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the required LIWORK.
```

*LIWORK*

```
LIWORK is INTEGER
The dimension of the array IWORK.
If JOBZ = 'N' or N <= 1, LIWORK >= 1.
If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the required sizes of the WORK and
IWORK arrays, returns these values as the first entries of
the WORK and IWORK arrays, and no error message related to
LWORK or LIWORK is issued by XERBLA.
```

*INFO*

```
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: SPPTRF or SSPEVD returned an error code:
<= N: if INFO = i, SSPEVD failed to converge;
i off-diagonal elements of an intermediate
tridiagonal form did not converge to zero;
> N: if INFO = N + i, for 1 <= i <= N, then the leading
minor of order i of B is not positive definite.
The factorization of B could not be completed and
no eigenvalues or eigenvectors were computed.
```

**Author:**

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

**Date:**

November 2011

**Contributors:**

Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA

Definition at line 210 of file sspgvd.f.

## Author

Generated automatically by Doxygen for LAPACK from the source code.

## Referenced By

sspgvd(3) is an alias of sspgvd.f(3).

Sat Nov 16 2013 Version 3.4.2 LAPACK