sspgv.f man page

sspgv.f

Synopsis

Functions/Subroutines

subroutine sspgv (ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK, INFO)
SSPGV

Function/Subroutine Documentation

subroutine sspgv (integer ITYPE, character JOBZ, character UPLO, integer N, real, dimension( * ) AP, real, dimension( * ) BP, real, dimension( * ) W, real, dimension( ldz, * ) Z, integer LDZ, real, dimension( * ) WORK, integer INFO)

SSPGV  

Purpose:

 SSPGV computes all the eigenvalues and, optionally, the eigenvectors
 of a real generalized symmetric-definite eigenproblem, of the form
 A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.
 Here A and B are assumed to be symmetric, stored in packed format,
 and B is also positive definite.
Parameters:

ITYPE

          ITYPE is INTEGER
          Specifies the problem type to be solved:
          = 1:  A*x = (lambda)*B*x
          = 2:  A*B*x = (lambda)*x
          = 3:  B*A*x = (lambda)*x

JOBZ

          JOBZ is CHARACTER*1
          = 'N':  Compute eigenvalues only;
          = 'V':  Compute eigenvalues and eigenvectors.

UPLO

          UPLO is CHARACTER*1
          = 'U':  Upper triangles of A and B are stored;
          = 'L':  Lower triangles of A and B are stored.

N

          N is INTEGER
          The order of the matrices A and B.  N >= 0.

AP

          AP is REAL array, dimension (N*(N+1)/2)
          On entry, the upper or lower triangle of the symmetric matrix
          A, packed columnwise in a linear array.  The j-th column of A
          is stored in the array AP as follows:
          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.

          On exit, the contents of AP are destroyed.

BP

          BP is REAL array, dimension (N*(N+1)/2)
          On entry, the upper or lower triangle of the symmetric matrix
          B, packed columnwise in a linear array.  The j-th column of B
          is stored in the array BP as follows:
          if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
          if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.

          On exit, the triangular factor U or L from the Cholesky
          factorization B = U**T*U or B = L*L**T, in the same storage
          format as B.

W

          W is REAL array, dimension (N)
          If INFO = 0, the eigenvalues in ascending order.

Z

          Z is REAL array, dimension (LDZ, N)
          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
          eigenvectors.  The eigenvectors are normalized as follows:
          if ITYPE = 1 or 2, Z**T*B*Z = I;
          if ITYPE = 3, Z**T*inv(B)*Z = I.
          If JOBZ = 'N', then Z is not referenced.

LDZ

          LDZ is INTEGER
          The leading dimension of the array Z.  LDZ >= 1, and if
          JOBZ = 'V', LDZ >= max(1,N).

WORK

          WORK is REAL array, dimension (3*N)

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  SPPTRF or SSPEV returned an error code:
             <= N:  if INFO = i, SSPEV failed to converge;
                    i off-diagonal elements of an intermediate
                    tridiagonal form did not converge to zero.
             > N:   if INFO = n + i, for 1 <= i <= n, then the leading
                    minor of order i of B is not positive definite.
                    The factorization of B could not be completed and
                    no eigenvalues or eigenvectors were computed.
Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

June 2017

Definition at line 162 of file sspgv.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Referenced By

The man page sspgv(3) is an alias of sspgv.f(3).

Tue Nov 14 2017 Version 3.8.0 LAPACK