ssbev.f man page

ssbev.f —

Synopsis

Functions/Subroutines

subroutine ssbev (JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ, WORK, INFO)
SSBEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices

Function/Subroutine Documentation

subroutine ssbev (character JOBZ, character UPLO, integer N, integer KD, real, dimension( ldab, * ) AB, integer LDAB, real, dimension( * ) W, real, dimension( ldz, * ) Z, integer LDZ, real, dimension( * ) WORK, integer INFO)

SSBEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices  

Purpose:

 SSBEV computes all the eigenvalues and, optionally, eigenvectors of
 a real symmetric band matrix A.
Parameters:

JOBZ

          JOBZ is CHARACTER*1
          = 'N':  Compute eigenvalues only;
          = 'V':  Compute eigenvalues and eigenvectors.

UPLO

          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.

N

          N is INTEGER
          The order of the matrix A.  N >= 0.

KD

          KD is INTEGER
          The number of superdiagonals of the matrix A if UPLO = 'U',
          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.

AB

          AB is REAL array, dimension (LDAB, N)
          On entry, the upper or lower triangle of the symmetric band
          matrix A, stored in the first KD+1 rows of the array.  The
          j-th column of A is stored in the j-th column of the array AB
          as follows:
          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).

          On exit, AB is overwritten by values generated during the
          reduction to tridiagonal form.  If UPLO = 'U', the first
          superdiagonal and the diagonal of the tridiagonal matrix T
          are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
          the diagonal and first subdiagonal of T are returned in the
          first two rows of AB.

LDAB

          LDAB is INTEGER
          The leading dimension of the array AB.  LDAB >= KD + 1.

W

          W is REAL array, dimension (N)
          If INFO = 0, the eigenvalues in ascending order.

Z

          Z is REAL array, dimension (LDZ, N)
          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
          eigenvectors of the matrix A, with the i-th column of Z
          holding the eigenvector associated with W(i).
          If JOBZ = 'N', then Z is not referenced.

LDZ

          LDZ is INTEGER
          The leading dimension of the array Z.  LDZ >= 1, and if
          JOBZ = 'V', LDZ >= max(1,N).

WORK

          WORK is REAL array, dimension (max(1,3*N-2))

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, the algorithm failed to converge; i
                off-diagonal elements of an intermediate tridiagonal
                form did not converge to zero.
Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

December 2016

Definition at line 148 of file ssbev.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Referenced By

The man page ssbev(3) is an alias of ssbev.f(3).

Sat Jun 24 2017 Version 3.7.1 LAPACK