slatrz.f man page

slatrz.f —



subroutine slatrz (M, N, L, A, LDA, TAU, WORK)
SLATRZ factors an upper trapezoidal matrix by means of orthogonal transformations.

Function/Subroutine Documentation

subroutine slatrz (integerM, integerN, integerL, real, dimension( lda, * )A, integerLDA, real, dimension( * )TAU, real, dimension( * )WORK)

SLATRZ factors an upper trapezoidal matrix by means of orthogonal transformations.  


 SLATRZ factors the M-by-(M+L) real upper trapezoidal matrix
 [ A1 A2 ] = [ A(1:M,1:M) A(1:M,N-L+1:N) ] as ( R  0 ) * Z, by means
 of orthogonal transformations.  Z is an (M+L)-by-(M+L) orthogonal
 matrix and, R and A1 are M-by-M upper triangular matrices.


          M is INTEGER
          The number of rows of the matrix A.  M >= 0.


          N is INTEGER
          The number of columns of the matrix A.  N >= 0.


          L is INTEGER
          The number of columns of the matrix A containing the
          meaningful part of the Householder vectors. N-M >= L >= 0.


          A is REAL array, dimension (LDA,N)
          On entry, the leading M-by-N upper trapezoidal part of the
          array A must contain the matrix to be factorized.
          On exit, the leading M-by-M upper triangular part of A
          contains the upper triangular matrix R, and elements N-L+1 to
          N of the first M rows of A, with the array TAU, represent the
          orthogonal matrix Z as a product of M elementary reflectors.


          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,M).


          TAU is REAL array, dimension (M)
          The scalar factors of the elementary reflectors.


          WORK is REAL array, dimension (M)

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.


September 2012


A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA

Further Details:

  The factorization is obtained by Householder's method.  The kth
  transformation matrix, Z( k ), which is used to introduce zeros into
  the ( m - k + 1 )th row of A, is given in the form

     Z( k ) = ( I     0   ),
              ( 0  T( k ) )


     T( k ) = I - tau*u( k )*u( k )**T,   u( k ) = (   1    ),
                                                 (   0    )
                                                 ( z( k ) )

  tau is a scalar and z( k ) is an l element vector. tau and z( k )
  are chosen to annihilate the elements of the kth row of A2.

  The scalar tau is returned in the kth element of TAU and the vector
  u( k ) in the kth row of A2, such that the elements of z( k ) are
  in  a( k, l + 1 ), ..., a( k, n ). The elements of R are returned in
  the upper triangular part of A1.

  Z is given by

     Z =  Z( 1 ) * Z( 2 ) * ... * Z( m ).

Definition at line 141 of file slatrz.f.


Generated automatically by Doxygen for LAPACK from the source code.

Referenced By

slatrz(3) is an alias of slatrz.f(3).

Sat Nov 16 2013 Version 3.4.2 LAPACK