slarfb.f man page

slarfb.f —

Synopsis

Functions/Subroutines

subroutine slarfb (SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV, T, LDT, C, LDC, WORK, LDWORK)
SLARFB applies a block reflector or its transpose to a general rectangular matrix.

Function/Subroutine Documentation

subroutine slarfb (characterSIDE, characterTRANS, characterDIRECT, characterSTOREV, integerM, integerN, integerK, real, dimension( ldv, * )V, integerLDV, real, dimension( ldt, * )T, integerLDT, real, dimension( ldc, * )C, integerLDC, real, dimension( ldwork, * )WORK, integerLDWORK)

SLARFB applies a block reflector or its transpose to a general rectangular matrix.  

Purpose:

 SLARFB applies a real block reflector H or its transpose H**T to a
 real m by n matrix C, from either the left or the right.
Parameters:

SIDE

          SIDE is CHARACTER*1
          = 'L': apply H or H**T from the Left
          = 'R': apply H or H**T from the Right

TRANS

          TRANS is CHARACTER*1
          = 'N': apply H (No transpose)
          = 'T': apply H**T (Transpose)

DIRECT

          DIRECT is CHARACTER*1
          Indicates how H is formed from a product of elementary
          reflectors
          = 'F': H = H(1) H(2) . . . H(k) (Forward)
          = 'B': H = H(k) . . . H(2) H(1) (Backward)

STOREV

          STOREV is CHARACTER*1
          Indicates how the vectors which define the elementary
          reflectors are stored:
          = 'C': Columnwise
          = 'R': Rowwise

M

          M is INTEGER
          The number of rows of the matrix C.

N

          N is INTEGER
          The number of columns of the matrix C.

K

          K is INTEGER
          The order of the matrix T (= the number of elementary
          reflectors whose product defines the block reflector).

V

          V is REAL array, dimension
                                (LDV,K) if STOREV = 'C'
                                (LDV,M) if STOREV = 'R' and SIDE = 'L'
                                (LDV,N) if STOREV = 'R' and SIDE = 'R'
          The matrix V. See Further Details.

LDV

          LDV is INTEGER
          The leading dimension of the array V.
          If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M);
          if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N);
          if STOREV = 'R', LDV >= K.

T

          T is REAL array, dimension (LDT,K)
          The triangular k by k matrix T in the representation of the
          block reflector.

LDT

          LDT is INTEGER
          The leading dimension of the array T. LDT >= K.

C

          C is REAL array, dimension (LDC,N)
          On entry, the m by n matrix C.
          On exit, C is overwritten by H*C or H**T*C or C*H or C*H**T.

LDC

          LDC is INTEGER
          The leading dimension of the array C. LDC >= max(1,M).

WORK

          WORK is REAL array, dimension (LDWORK,K)

LDWORK

          LDWORK is INTEGER
          The leading dimension of the array WORK.
          If SIDE = 'L', LDWORK >= max(1,N);
          if SIDE = 'R', LDWORK >= max(1,M).
Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

June 2013

Further Details:

  The shape of the matrix V and the storage of the vectors which define
  the H(i) is best illustrated by the following example with n = 5 and
  k = 3. The elements equal to 1 are not stored; the corresponding
  array elements are modified but restored on exit. The rest of the
  array is not used.

  DIRECT = 'F' and STOREV = 'C':         DIRECT = 'F' and STOREV = 'R':

               V = (  1       )                 V = (  1 v1 v1 v1 v1 )
                   ( v1  1    )                     (     1 v2 v2 v2 )
                   ( v1 v2  1 )                     (        1 v3 v3 )
                   ( v1 v2 v3 )
                   ( v1 v2 v3 )

  DIRECT = 'B' and STOREV = 'C':         DIRECT = 'B' and STOREV = 'R':

               V = ( v1 v2 v3 )                 V = ( v1 v1  1       )
                   ( v1 v2 v3 )                     ( v2 v2 v2  1    )
                   (  1 v2 v3 )                     ( v3 v3 v3 v3  1 )
                   (     1 v3 )
                   (        1 )

Definition at line 195 of file slarfb.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Referenced By

slarfb(3) is an alias of slarfb.f(3).

Sat Nov 16 2013 Version 3.4.2 LAPACK