slanst.f - Man Page
SRC/slanst.f
Synopsis
Functions/Subroutines
real function slanst (norm, n, d, e)
SLANST returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric tridiagonal matrix.
Function/Subroutine Documentation
real function slanst (character norm, integer n, real, dimension( * ) d, real, dimension( * ) e)
SLANST returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric tridiagonal matrix.
Purpose:
SLANST returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric tridiagonal matrix A.
- Returns
SLANST
SLANST = ( max(abs(A(i,j))), NORM = 'M' or 'm' ( ( norm1(A), NORM = '1', 'O' or 'o' ( ( normI(A), NORM = 'I' or 'i' ( ( normF(A), NORM = 'F', 'f', 'E' or 'e' where norm1 denotes the one norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
- Parameters
NORM
NORM is CHARACTER*1 Specifies the value to be returned in SLANST as described above.
N
N is INTEGER The order of the matrix A. N >= 0. When N = 0, SLANST is set to zero.
D
D is REAL array, dimension (N) The diagonal elements of A.
E
E is REAL array, dimension (N-1) The (n-1) sub-diagonal or super-diagonal elements of A.
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 99 of file slanst.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Referenced By
The man page slanst(3) is an alias of slanst.f(3).
Tue Nov 28 2023 12:08:42 Version 3.12.0 LAPACK