# slansf.f man page

slansf.f —

## Synopsis

### Functions/Subroutines

REAL functionslansf(NORM, TRANSR, UPLO, N, A, WORK)SLANSF

## Function/Subroutine Documentation

### REAL function slansf (characterNORM, characterTRANSR, characterUPLO, integerN, real, dimension( 0: * )A, real, dimension( 0: * )WORK)

**SLANSF**

**Purpose:**

```
SLANSF returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of a
real symmetric matrix A in RFP format.
```

**Returns:**

SLANSF

```
SLANSF = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a matrix norm.
```

**Parameters:**

*NORM*

```
NORM is CHARACTER*1
Specifies the value to be returned in SLANSF as described
above.
```

*TRANSR*

```
TRANSR is CHARACTER*1
Specifies whether the RFP format of A is normal or
transposed format.
= 'N': RFP format is Normal;
= 'T': RFP format is Transpose.
```

*UPLO*

```
UPLO is CHARACTER*1
On entry, UPLO specifies whether the RFP matrix A came from
an upper or lower triangular matrix as follows:
= 'U': RFP A came from an upper triangular matrix;
= 'L': RFP A came from a lower triangular matrix.
```

*N*

```
N is INTEGER
The order of the matrix A. N >= 0. When N = 0, SLANSF is
set to zero.
```

*A*

```
A is REAL array, dimension ( N*(N+1)/2 );
On entry, the upper (if UPLO = 'U') or lower (if UPLO = 'L')
part of the symmetric matrix A stored in RFP format. See the
"Notes" below for more details.
Unchanged on exit.
```

*WORK*

```
WORK is REAL array, dimension (MAX(1,LWORK)),
where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
WORK is not referenced.
```

**Author:**

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

**Date:**

September 2012

**Further Details:**

```
We first consider Rectangular Full Packed (RFP) Format when N is
even. We give an example where N = 6.
AP is Upper AP is Lower
00 01 02 03 04 05 00
11 12 13 14 15 10 11
22 23 24 25 20 21 22
33 34 35 30 31 32 33
44 45 40 41 42 43 44
55 50 51 52 53 54 55
Let TRANSR = 'N'. RFP holds AP as follows:
For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
three columns of AP upper. The lower triangle A(4:6,0:2) consists of
the transpose of the first three columns of AP upper.
For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
three columns of AP lower. The upper triangle A(0:2,0:2) consists of
the transpose of the last three columns of AP lower.
This covers the case N even and TRANSR = 'N'.
RFP A RFP A
03 04 05 33 43 53
13 14 15 00 44 54
23 24 25 10 11 55
33 34 35 20 21 22
00 44 45 30 31 32
01 11 55 40 41 42
02 12 22 50 51 52
Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
transpose of RFP A above. One therefore gets:
RFP A RFP A
03 13 23 33 00 01 02 33 00 10 20 30 40 50
04 14 24 34 44 11 12 43 44 11 21 31 41 51
05 15 25 35 45 55 22 53 54 55 22 32 42 52
We then consider Rectangular Full Packed (RFP) Format when N is
odd. We give an example where N = 5.
AP is Upper AP is Lower
00 01 02 03 04 00
11 12 13 14 10 11
22 23 24 20 21 22
33 34 30 31 32 33
44 40 41 42 43 44
Let TRANSR = 'N'. RFP holds AP as follows:
For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
three columns of AP upper. The lower triangle A(3:4,0:1) consists of
the transpose of the first two columns of AP upper.
For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
three columns of AP lower. The upper triangle A(0:1,1:2) consists of
the transpose of the last two columns of AP lower.
This covers the case N odd and TRANSR = 'N'.
RFP A RFP A
02 03 04 00 33 43
12 13 14 10 11 44
22 23 24 20 21 22
00 33 34 30 31 32
01 11 44 40 41 42
Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
transpose of RFP A above. One therefore gets:
RFP A RFP A
02 12 22 00 01 00 10 20 30 40 50
03 13 23 33 11 33 11 21 31 41 51
04 14 24 34 44 43 44 22 32 42 52
```

Definition at line 210 of file slansf.f.

## Author

Generated automatically by Doxygen for LAPACK from the source code.

## Referenced By

slansf(3) is an alias of slansf.f(3).