slagv2.f - Man Page
SRC/slagv2.f
Synopsis
Functions/Subroutines
subroutine slagv2 (a, lda, b, ldb, alphar, alphai, beta, csl, snl, csr, snr)
SLAGV2 computes the Generalized Schur factorization of a real 2-by-2 matrix pencil (A,B) where B is upper triangular.
Function/Subroutine Documentation
subroutine slagv2 (real, dimension( lda, * ) a, integer lda, real, dimension( ldb, * ) b, integer ldb, real, dimension( 2 ) alphar, real, dimension( 2 ) alphai, real, dimension( 2 ) beta, real csl, real snl, real csr, real snr)
SLAGV2 computes the Generalized Schur factorization of a real 2-by-2 matrix pencil (A,B) where B is upper triangular.
Purpose:
SLAGV2 computes the Generalized Schur factorization of a real 2-by-2 matrix pencil (A,B) where B is upper triangular. This routine computes orthogonal (rotation) matrices given by CSL, SNL and CSR, SNR such that 1) if the pencil (A,B) has two real eigenvalues (include 0/0 or 1/0 types), then [ a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ] [ 0 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ] [ b11 b12 ] := [ CSL SNL ] [ b11 b12 ] [ CSR -SNR ] [ 0 b22 ] [ -SNL CSL ] [ 0 b22 ] [ SNR CSR ], 2) if the pencil (A,B) has a pair of complex conjugate eigenvalues, then [ a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ] [ a21 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ] [ b11 0 ] := [ CSL SNL ] [ b11 b12 ] [ CSR -SNR ] [ 0 b22 ] [ -SNL CSL ] [ 0 b22 ] [ SNR CSR ] where b11 >= b22 > 0.
- Parameters
A
A is REAL array, dimension (LDA, 2) On entry, the 2 x 2 matrix A. On exit, A is overwritten by the “A-part” of the generalized Schur form.
LDA
LDA is INTEGER THe leading dimension of the array A. LDA >= 2.
B
B is REAL array, dimension (LDB, 2) On entry, the upper triangular 2 x 2 matrix B. On exit, B is overwritten by the “B-part” of the generalized Schur form.
LDB
LDB is INTEGER THe leading dimension of the array B. LDB >= 2.
ALPHAR
ALPHAR is REAL array, dimension (2)
ALPHAI
ALPHAI is REAL array, dimension (2)
BETA
BETA is REAL array, dimension (2) (ALPHAR(k)+i*ALPHAI(k))/BETA(k) are the eigenvalues of the pencil (A,B), k=1,2, i = sqrt(-1). Note that BETA(k) may be zero.
CSL
CSL is REAL The cosine of the left rotation matrix.
SNL
SNL is REAL The sine of the left rotation matrix.
CSR
CSR is REAL The cosine of the right rotation matrix.
SNR
SNR is REAL The sine of the right rotation matrix.
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
- Contributors:
Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
Definition at line 155 of file slagv2.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Referenced By
The man page slagv2(3) is an alias of slagv2.f(3).
Tue Nov 28 2023 12:08:42 Version 3.12.0 LAPACK