# sgerqf.f man page

sgerqf.f

## Synopsis

### Functions/Subroutines

subroutine **sgerqf** (M, **N**, A, **LDA**, TAU, WORK, LWORK, INFO)**SGERQF**

## Function/Subroutine Documentation

### subroutine sgerqf (integer M, integer N, real, dimension( lda, * ) A, integer LDA, real, dimension( * ) TAU, real, dimension( * ) WORK, integer LWORK, integer INFO)

**SGERQF**

**Purpose:**

SGERQF computes an RQ factorization of a real M-by-N matrix A: A = R * Q.

**Parameters:**-
*M*M is INTEGER The number of rows of the matrix A. M >= 0.

*N*N is INTEGER The number of columns of the matrix A. N >= 0.

*A*A is REAL array, dimension (LDA,N) On entry, the M-by-N matrix A. On exit, if m <= n, the upper triangle of the subarray A(1:m,n-m+1:n) contains the M-by-M upper triangular matrix R; if m >= n, the elements on and above the (m-n)-th subdiagonal contain the M-by-N upper trapezoidal matrix R; the remaining elements, with the array TAU, represent the orthogonal matrix Q as a product of min(m,n) elementary reflectors (see Further Details).

*LDA*LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M).

*TAU*TAU is REAL array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details).

*WORK*WORK is REAL array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

*LWORK*LWORK is INTEGER The dimension of the array WORK. LWORK >= max(1,M). For optimum performance LWORK >= M*NB, where NB is the optimal blocksize. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.

*INFO*INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value

**Author:**-
Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

**Date:**December 2016

**Further Details:**

The matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) . . . H(k), where k = min(m,n). Each H(i) has the form H(i) = I - tau * v * v**T where tau is a real scalar, and v is a real vector with v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in A(m-k+i,1:n-k+i-1), and tau in TAU(i).

Definition at line 140 of file sgerqf.f.

## Author

Generated automatically by Doxygen for LAPACK from the source code.

## Referenced By

The man page sgerqf(3) is an alias of sgerqf.f(3).

Tue Nov 14 2017 Version 3.8.0 LAPACK