sgeqr2.f man page

sgeqr2.f —

Synopsis

Functions/Subroutines

subroutine sgeqr2 (M, N, A, LDA, TAU, WORK, INFO)
SGEQR2 computes the QR factorization of a general rectangular matrix using an unblocked algorithm.

Function/Subroutine Documentation

subroutine sgeqr2 (integerM, integerN, real, dimension( lda, * )A, integerLDA, real, dimension( * )TAU, real, dimension( * )WORK, integerINFO)

SGEQR2 computes the QR factorization of a general rectangular matrix using an unblocked algorithm.

Purpose:

SGEQR2 computes a QR factorization of a real m by n matrix A:
A = Q * R.

Parameters:

M

M is INTEGER
The number of rows of the matrix A.  M >= 0.

N

N is INTEGER
The number of columns of the matrix A.  N >= 0.

A

A is REAL array, dimension (LDA,N)
On entry, the m by n matrix A.
On exit, the elements on and above the diagonal of the array
contain the min(m,n) by n upper trapezoidal matrix R (R is
upper triangular if m >= n); the elements below the diagonal,
with the array TAU, represent the orthogonal matrix Q as a
product of elementary reflectors (see Further Details).

LDA

LDA is INTEGER
The leading dimension of the array A.  LDA >= max(1,M).

TAU

TAU is REAL array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).

WORK

WORK is REAL array, dimension (N)

INFO

INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

September 2012

Further Details:

The matrix Q is represented as a product of elementary reflectors

   Q = H(1) H(2) . . . H(k), where k = min(m,n).

Each H(i) has the form

   H(i) = I - tau * v * v**T

where tau is a real scalar, and v is a real vector with
v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
and tau in TAU(i).

Definition at line 122 of file sgeqr2.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Referenced By

sgeqr2(3) is an alias of sgeqr2.f(3).

Sat Nov 16 2013 Version 3.4.2 LAPACK