sgelqt.f - Man Page
SRC/sgelqt.f
Synopsis
Functions/Subroutines
subroutine sgelqt (m, n, mb, a, lda, t, ldt, work, info)
SGELQT
Function/Subroutine Documentation
subroutine sgelqt (integer m, integer n, integer mb, real, dimension( lda, * ) a, integer lda, real, dimension( ldt, * ) t, integer ldt, real, dimension( * ) work, integer info)
SGELQT
Purpose:
DGELQT computes a blocked LQ factorization of a real M-by-N matrix A using the compact WY representation of Q.
- Parameters
M
M is INTEGER The number of rows of the matrix A. M >= 0.
N
N is INTEGER The number of columns of the matrix A. N >= 0.
MB
MB is INTEGER The block size to be used in the blocked QR. MIN(M,N) >= MB >= 1.
A
A is REAL array, dimension (LDA,N) On entry, the M-by-N matrix A. On exit, the elements on and below the diagonal of the array contain the M-by-MIN(M,N) lower trapezoidal matrix L (L is lower triangular if M <= N); the elements above the diagonal are the rows of V.
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M).
T
T is REAL array, dimension (LDT,MIN(M,N)) The upper triangular block reflectors stored in compact form as a sequence of upper triangular blocks. See below for further details.
LDT
LDT is INTEGER The leading dimension of the array T. LDT >= MB.
WORK
WORK is REAL array, dimension (MB*N)
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
The matrix V stores the elementary reflectors H(i) in the i-th row above the diagonal. For example, if M=5 and N=3, the matrix V is V = ( 1 v1 v1 v1 v1 ) ( 1 v2 v2 v2 ) ( 1 v3 v3 ) where the vi's represent the vectors which define H(i), which are returned in the matrix A. The 1's along the diagonal of V are not stored in A. Let K=MIN(M,N). The number of blocks is B = ceiling(K/MB), where each block is of order MB except for the last block, which is of order IB = K - (B-1)*MB. For each of the B blocks, a upper triangular block reflector factor is computed: T1, T2, ..., TB. The MB-by-MB (and IB-by-IB for the last block) T's are stored in the MB-by-K matrix T as T = (T1 T2 ... TB).
Definition at line 123 of file sgelqt.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Referenced By
The man page sgelqt(3) is an alias of sgelqt.f(3).
Tue Nov 28 2023 12:08:42 Version 3.12.0 LAPACK