sgehd2.f man page

sgehd2.f —

Synopsis

Functions/Subroutines

subroutine sgehd2 (N, ILO, IHI, A, LDA, TAU, WORK, INFO)
SGEHD2 reduces a general square matrix to upper Hessenberg form using an unblocked algorithm.

Function/Subroutine Documentation

subroutine sgehd2 (integerN, integerILO, integerIHI, real, dimension( lda, * )A, integerLDA, real, dimension( * )TAU, real, dimension( * )WORK, integerINFO)

SGEHD2 reduces a general square matrix to upper Hessenberg form using an unblocked algorithm.

Purpose:

SGEHD2 reduces a real general matrix A to upper Hessenberg form H by
an orthogonal similarity transformation:  Q**T * A * Q = H .

Parameters:

N

N is INTEGER
The order of the matrix A.  N >= 0.

ILO

ILO is INTEGER

IHI

IHI is INTEGER

It is assumed that A is already upper triangular in rows
and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
set by a previous call to SGEBAL; otherwise they should be
set to 1 and N respectively. See Further Details.
1 <= ILO <= IHI <= max(1,N).

A

A is REAL array, dimension (LDA,N)
On entry, the n by n general matrix to be reduced.
On exit, the upper triangle and the first subdiagonal of A
are overwritten with the upper Hessenberg matrix H, and the
elements below the first subdiagonal, with the array TAU,
represent the orthogonal matrix Q as a product of elementary
reflectors. See Further Details.

LDA

LDA is INTEGER
The leading dimension of the array A.  LDA >= max(1,N).

TAU

TAU is REAL array, dimension (N-1)
The scalar factors of the elementary reflectors (see Further
Details).

WORK

WORK is REAL array, dimension (N)

INFO

INFO is INTEGER
= 0:  successful exit.
< 0:  if INFO = -i, the i-th argument had an illegal value.

Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

September 2012

Further Details:

The matrix Q is represented as a product of (ihi-ilo) elementary
reflectors

   Q = H(ilo) H(ilo+1) . . . H(ihi-1).

Each H(i) has the form

   H(i) = I - tau * v * v**T

where tau is a real scalar, and v is a real vector with
v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on
exit in A(i+2:ihi,i), and tau in TAU(i).

The contents of A are illustrated by the following example, with
n = 7, ilo = 2 and ihi = 6:

on entry,                        on exit,

( a   a   a   a   a   a   a )    (  a   a   h   h   h   h   a )
(     a   a   a   a   a   a )    (      a   h   h   h   h   a )
(     a   a   a   a   a   a )    (      h   h   h   h   h   h )
(     a   a   a   a   a   a )    (      v2  h   h   h   h   h )
(     a   a   a   a   a   a )    (      v2  v3  h   h   h   h )
(     a   a   a   a   a   a )    (      v2  v3  v4  h   h   h )
(                         a )    (                          a )

where a denotes an element of the original matrix A, h denotes a
modified element of the upper Hessenberg matrix H, and vi denotes an
element of the vector defining H(i).

Definition at line 150 of file sgehd2.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Referenced By

sgehd2(3) is an alias of sgehd2.f(3).

Sat Nov 16 2013 Version 3.4.2 LAPACK