sgegs.f - Man Page

SRC/DEPRECATED/sgegs.f

Synopsis

Functions/Subroutines

subroutine sgegs (jobvsl, jobvsr, n, a, lda, b, ldb, alphar, alphai, beta, vsl, ldvsl, vsr, ldvsr, work, lwork, info)
SGEGS computes the eigenvalues, real Schur form, and, optionally, the left and/or right Schur vectors of a real matrix pair (A,B)

Function/Subroutine Documentation

subroutine sgegs (character jobvsl, character jobvsr, integer n, real, dimension( lda, * ) a, integer lda, real, dimension( ldb, * ) b, integer ldb, real, dimension( * ) alphar, real, dimension( * ) alphai, real, dimension( * ) beta, real, dimension( ldvsl, * ) vsl, integer ldvsl, real, dimension( ldvsr, * ) vsr, integer ldvsr, real, dimension( * ) work, integer lwork, integer info)

SGEGS computes the eigenvalues, real Schur form, and, optionally, the left and/or right Schur vectors of a real matrix pair (A,B)  

Purpose:

 This routine is deprecated and has been replaced by routine SGGES.

 SGEGS computes the eigenvalues, real Schur form, and, optionally,
 left and or/right Schur vectors of a real matrix pair (A,B).
 Given two square matrices A and B, the generalized real Schur
 factorization has the form

   A = Q*S*Z**T,  B = Q*T*Z**T

 where Q and Z are orthogonal matrices, T is upper triangular, and S
 is an upper quasi-triangular matrix with 1-by-1 and 2-by-2 diagonal
 blocks, the 2-by-2 blocks corresponding to complex conjugate pairs
 of eigenvalues of (A,B).  The columns of Q are the left Schur vectors
 and the columns of Z are the right Schur vectors.

 If only the eigenvalues of (A,B) are needed, the driver routine
 SGEGV should be used instead.  See SGEGV for a description of the
 eigenvalues of the generalized nonsymmetric eigenvalue problem
 (GNEP).
Parameters

JOBVSL

          JOBVSL is CHARACTER*1
          = 'N':  do not compute the left Schur vectors;
          = 'V':  compute the left Schur vectors (returned in VSL).

JOBVSR

          JOBVSR is CHARACTER*1
          = 'N':  do not compute the right Schur vectors;
          = 'V':  compute the right Schur vectors (returned in VSR).

N

          N is INTEGER
          The order of the matrices A, B, VSL, and VSR.  N >= 0.

A

          A is REAL array, dimension (LDA, N)
          On entry, the matrix A.
          On exit, the upper quasi-triangular matrix S from the
          generalized real Schur factorization.

LDA

          LDA is INTEGER
          The leading dimension of A.  LDA >= max(1,N).

B

          B is REAL array, dimension (LDB, N)
          On entry, the matrix B.
          On exit, the upper triangular matrix T from the generalized
          real Schur factorization.

LDB

          LDB is INTEGER
          The leading dimension of B.  LDB >= max(1,N).

ALPHAR

          ALPHAR is REAL array, dimension (N)
          The real parts of each scalar alpha defining an eigenvalue
          of GNEP.

ALPHAI

          ALPHAI is REAL array, dimension (N)
          The imaginary parts of each scalar alpha defining an
          eigenvalue of GNEP.  If ALPHAI(j) is zero, then the j-th
          eigenvalue is real; if positive, then the j-th and (j+1)-st
          eigenvalues are a complex conjugate pair, with
          ALPHAI(j+1) = -ALPHAI(j).

BETA

          BETA is REAL array, dimension (N)
          The scalars beta that define the eigenvalues of GNEP.
          Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and
          beta = BETA(j) represent the j-th eigenvalue of the matrix
          pair (A,B), in one of the forms lambda = alpha/beta or
          mu = beta/alpha.  Since either lambda or mu may overflow,
          they should not, in general, be computed.

VSL

          VSL is REAL array, dimension (LDVSL,N)
          If JOBVSL = 'V', the matrix of left Schur vectors Q.
          Not referenced if JOBVSL = 'N'.

LDVSL

          LDVSL is INTEGER
          The leading dimension of the matrix VSL. LDVSL >=1, and
          if JOBVSL = 'V', LDVSL >= N.

VSR

          VSR is REAL array, dimension (LDVSR,N)
          If JOBVSR = 'V', the matrix of right Schur vectors Z.
          Not referenced if JOBVSR = 'N'.

LDVSR

          LDVSR is INTEGER
          The leading dimension of the matrix VSR. LDVSR >= 1, and
          if JOBVSR = 'V', LDVSR >= N.

WORK

          WORK is REAL array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

LWORK

          LWORK is INTEGER
          The dimension of the array WORK.  LWORK >= max(1,4*N).
          For good performance, LWORK must generally be larger.
          To compute the optimal value of LWORK, call ILAENV to get
          blocksizes (for SGEQRF, SORMQR, and SORGQR.)  Then compute:
          NB  -- MAX of the blocksizes for SGEQRF, SORMQR, and SORGQR
          The optimal LWORK is  2*N + N*(NB+1).

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA.

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value.
          = 1,...,N:
                The QZ iteration failed.  (A,B) are not in Schur
                form, but ALPHAR(j), ALPHAI(j), and BETA(j) should
                be correct for j=INFO+1,...,N.
          > N:  errors that usually indicate LAPACK problems:
                =N+1: error return from SGGBAL
                =N+2: error return from SGEQRF
                =N+3: error return from SORMQR
                =N+4: error return from SORGQR
                =N+5: error return from SGGHRD
                =N+6: error return from SHGEQZ (other than failed
                                                iteration)
                =N+7: error return from SGGBAK (computing VSL)
                =N+8: error return from SGGBAK (computing VSR)
                =N+9: error return from SLASCL (various places)
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 224 of file sgegs.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Referenced By

The man page sgegs(3) is an alias of sgegs.f(3).

Tue Nov 28 2023 12:08:41 Version 3.12.0 LAPACK