sgegs.f - Man Page
SRC/DEPRECATED/sgegs.f
Synopsis
Functions/Subroutines
subroutine sgegs (jobvsl, jobvsr, n, a, lda, b, ldb, alphar, alphai, beta, vsl, ldvsl, vsr, ldvsr, work, lwork, info)
SGEGS computes the eigenvalues, real Schur form, and, optionally, the left and/or right Schur vectors of a real matrix pair (A,B)
Function/Subroutine Documentation
subroutine sgegs (character jobvsl, character jobvsr, integer n, real, dimension( lda, * ) a, integer lda, real, dimension( ldb, * ) b, integer ldb, real, dimension( * ) alphar, real, dimension( * ) alphai, real, dimension( * ) beta, real, dimension( ldvsl, * ) vsl, integer ldvsl, real, dimension( ldvsr, * ) vsr, integer ldvsr, real, dimension( * ) work, integer lwork, integer info)
SGEGS computes the eigenvalues, real Schur form, and, optionally, the left and/or right Schur vectors of a real matrix pair (A,B)
Purpose:
This routine is deprecated and has been replaced by routine SGGES. SGEGS computes the eigenvalues, real Schur form, and, optionally, left and or/right Schur vectors of a real matrix pair (A,B). Given two square matrices A and B, the generalized real Schur factorization has the form A = Q*S*Z**T, B = Q*T*Z**T where Q and Z are orthogonal matrices, T is upper triangular, and S is an upper quasi-triangular matrix with 1-by-1 and 2-by-2 diagonal blocks, the 2-by-2 blocks corresponding to complex conjugate pairs of eigenvalues of (A,B). The columns of Q are the left Schur vectors and the columns of Z are the right Schur vectors. If only the eigenvalues of (A,B) are needed, the driver routine SGEGV should be used instead. See SGEGV for a description of the eigenvalues of the generalized nonsymmetric eigenvalue problem (GNEP).
- Parameters
JOBVSL
JOBVSL is CHARACTER*1 = 'N': do not compute the left Schur vectors; = 'V': compute the left Schur vectors (returned in VSL).
JOBVSR
JOBVSR is CHARACTER*1 = 'N': do not compute the right Schur vectors; = 'V': compute the right Schur vectors (returned in VSR).
N
N is INTEGER The order of the matrices A, B, VSL, and VSR. N >= 0.
A
A is REAL array, dimension (LDA, N) On entry, the matrix A. On exit, the upper quasi-triangular matrix S from the generalized real Schur factorization.
LDA
LDA is INTEGER The leading dimension of A. LDA >= max(1,N).
B
B is REAL array, dimension (LDB, N) On entry, the matrix B. On exit, the upper triangular matrix T from the generalized real Schur factorization.
LDB
LDB is INTEGER The leading dimension of B. LDB >= max(1,N).
ALPHAR
ALPHAR is REAL array, dimension (N) The real parts of each scalar alpha defining an eigenvalue of GNEP.
ALPHAI
ALPHAI is REAL array, dimension (N) The imaginary parts of each scalar alpha defining an eigenvalue of GNEP. If ALPHAI(j) is zero, then the j-th eigenvalue is real; if positive, then the j-th and (j+1)-st eigenvalues are a complex conjugate pair, with ALPHAI(j+1) = -ALPHAI(j).
BETA
BETA is REAL array, dimension (N) The scalars beta that define the eigenvalues of GNEP. Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and beta = BETA(j) represent the j-th eigenvalue of the matrix pair (A,B), in one of the forms lambda = alpha/beta or mu = beta/alpha. Since either lambda or mu may overflow, they should not, in general, be computed.
VSL
VSL is REAL array, dimension (LDVSL,N) If JOBVSL = 'V', the matrix of left Schur vectors Q. Not referenced if JOBVSL = 'N'.
LDVSL
LDVSL is INTEGER The leading dimension of the matrix VSL. LDVSL >=1, and if JOBVSL = 'V', LDVSL >= N.
VSR
VSR is REAL array, dimension (LDVSR,N) If JOBVSR = 'V', the matrix of right Schur vectors Z. Not referenced if JOBVSR = 'N'.
LDVSR
LDVSR is INTEGER The leading dimension of the matrix VSR. LDVSR >= 1, and if JOBVSR = 'V', LDVSR >= N.
WORK
WORK is REAL array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
LWORK is INTEGER The dimension of the array WORK. LWORK >= max(1,4*N). For good performance, LWORK must generally be larger. To compute the optimal value of LWORK, call ILAENV to get blocksizes (for SGEQRF, SORMQR, and SORGQR.) Then compute: NB -- MAX of the blocksizes for SGEQRF, SORMQR, and SORGQR The optimal LWORK is 2*N + N*(NB+1). If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value. = 1,...,N: The QZ iteration failed. (A,B) are not in Schur form, but ALPHAR(j), ALPHAI(j), and BETA(j) should be correct for j=INFO+1,...,N. > N: errors that usually indicate LAPACK problems: =N+1: error return from SGGBAL =N+2: error return from SGEQRF =N+3: error return from SORMQR =N+4: error return from SORGQR =N+5: error return from SGGHRD =N+6: error return from SHGEQZ (other than failed iteration) =N+7: error return from SGGBAK (computing VSL) =N+8: error return from SGGBAK (computing VSR) =N+9: error return from SLASCL (various places)
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 224 of file sgegs.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Referenced By
The man page sgegs(3) is an alias of sgegs.f(3).
Tue Nov 28 2023 12:08:41 Version 3.12.0 LAPACK