sgbsv.f man page

sgbsv.f —



subroutine sgbsv (N, KL, KU, NRHS, AB, LDAB, IPIV, B, LDB, INFO)
SGBSV computes the solution to system of linear equations A * X = B for GB matrices (simple driver)

Function/Subroutine Documentation

subroutine sgbsv (integerN, integerKL, integerKU, integerNRHS, real, dimension( ldab, * )AB, integerLDAB, integer, dimension( * )IPIV, real, dimension( ldb, * )B, integerLDB, integerINFO)

SGBSV computes the solution to system of linear equations A * X = B for GB matrices (simple driver)  


 SGBSV computes the solution to a real system of linear equations
 A * X = B, where A is a band matrix of order N with KL subdiagonals
 and KU superdiagonals, and X and B are N-by-NRHS matrices.

 The LU decomposition with partial pivoting and row interchanges is
 used to factor A as A = L * U, where L is a product of permutation
 and unit lower triangular matrices with KL subdiagonals, and U is
 upper triangular with KL+KU superdiagonals.  The factored form of A
 is then used to solve the system of equations A * X = B.


          N is INTEGER
          The number of linear equations, i.e., the order of the
          matrix A.  N >= 0.


          KL is INTEGER
          The number of subdiagonals within the band of A.  KL >= 0.


          KU is INTEGER
          The number of superdiagonals within the band of A.  KU >= 0.


          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrix B.  NRHS >= 0.


          AB is REAL array, dimension (LDAB,N)
          On entry, the matrix A in band storage, in rows KL+1 to
          2*KL+KU+1; rows 1 to KL of the array need not be set.
          The j-th column of A is stored in the j-th column of the
          array AB as follows:
          AB(KL+KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+KL)
          On exit, details of the factorization: U is stored as an
          upper triangular band matrix with KL+KU superdiagonals in
          rows 1 to KL+KU+1, and the multipliers used during the
          factorization are stored in rows KL+KU+2 to 2*KL+KU+1.
          See below for further details.


          LDAB is INTEGER
          The leading dimension of the array AB.  LDAB >= 2*KL+KU+1.


          IPIV is INTEGER array, dimension (N)
          The pivot indices that define the permutation matrix P;
          row i of the matrix was interchanged with row IPIV(i).


          B is REAL array, dimension (LDB,NRHS)
          On entry, the N-by-NRHS right hand side matrix B.
          On exit, if INFO = 0, the N-by-NRHS solution matrix X.


          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).


          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, U(i,i) is exactly zero.  The factorization
                has been completed, but the factor U is exactly
                singular, and the solution has not been computed.

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.


November 2011

Further Details:

  The band storage scheme is illustrated by the following example, when
  M = N = 6, KL = 2, KU = 1:

  On entry:                       On exit:

      *    *    *    +    +    +       *    *    *   u14  u25  u36
      *    *    +    +    +    +       *    *   u13  u24  u35  u46
      *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56
     a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66
     a21  a32  a43  a54  a65   *      m21  m32  m43  m54  m65   *
     a31  a42  a53  a64   *    *      m31  m42  m53  m64   *    *

  Array elements marked * are not used by the routine; elements marked
  + need not be set on entry, but are required by the routine to store
  elements of U because of fill-in resulting from the row interchanges.

Definition at line 163 of file sgbsv.f.


Generated automatically by Doxygen for LAPACK from the source code.

Referenced By

sgbsv(3) is an alias of sgbsv.f(3).

Sat Nov 16 2013 Version 3.4.2 LAPACK