scsdts.f - Man Page
TESTING/EIG/scsdts.f
Synopsis
Functions/Subroutines
subroutine scsdts (m, p, q, x, xf, ldx, u1, ldu1, u2, ldu2, v1t, ldv1t, v2t, ldv2t, theta, iwork, work, lwork, rwork, result)
SCSDTS
Function/Subroutine Documentation
subroutine scsdts (integer m, integer p, integer q, real, dimension( ldx, * ) x, real, dimension( ldx, * ) xf, integer ldx, real, dimension( ldu1, * ) u1, integer ldu1, real, dimension( ldu2, * ) u2, integer ldu2, real, dimension( ldv1t, * ) v1t, integer ldv1t, real, dimension( ldv2t, * ) v2t, integer ldv2t, real, dimension( * ) theta, integer, dimension( * ) iwork, real, dimension( lwork ) work, integer lwork, real, dimension( * ) rwork, real, dimension( 15 ) result)
SCSDTS
Purpose:
SCSDTS tests SORCSD, which, given an M-by-M partitioned orthogonal matrix X, Q M-Q X = [ X11 X12 ] P , [ X21 X22 ] M-P computes the CSD [ U1 ]**T * [ X11 X12 ] * [ V1 ] [ U2 ] [ X21 X22 ] [ V2 ] [ I 0 0 | 0 0 0 ] [ 0 C 0 | 0 -S 0 ] [ 0 0 0 | 0 0 -I ] = [---------------------] = [ D11 D12 ] . [ 0 0 0 | I 0 0 ] [ D21 D22 ] [ 0 S 0 | 0 C 0 ] [ 0 0 I | 0 0 0 ] and also SORCSD2BY1, which, given Q [ X11 ] P , [ X21 ] M-P computes the 2-by-1 CSD [ I 0 0 ] [ 0 C 0 ] [ 0 0 0 ] [ U1 ]**T * [ X11 ] * V1 = [----------] = [ D11 ] , [ U2 ] [ X21 ] [ 0 0 0 ] [ D21 ] [ 0 S 0 ] [ 0 0 I ]
- Parameters
M
M is INTEGER The number of rows of the matrix X. M >= 0.
P
P is INTEGER The number of rows of the matrix X11. P >= 0.
Q
Q is INTEGER The number of columns of the matrix X11. Q >= 0.
X
X is REAL array, dimension (LDX,M) The M-by-M matrix X.
XF
XF is REAL array, dimension (LDX,M) Details of the CSD of X, as returned by SORCSD; see SORCSD for further details.
LDX
LDX is INTEGER The leading dimension of the arrays X and XF. LDX >= max( 1,M ).
U1
U1 is REAL array, dimension(LDU1,P) The P-by-P orthogonal matrix U1.
LDU1
LDU1 is INTEGER The leading dimension of the array U1. LDU >= max(1,P).
U2
U2 is REAL array, dimension(LDU2,M-P) The (M-P)-by-(M-P) orthogonal matrix U2.
LDU2
LDU2 is INTEGER The leading dimension of the array U2. LDU >= max(1,M-P).
V1T
V1T is REAL array, dimension(LDV1T,Q) The Q-by-Q orthogonal matrix V1T.
LDV1T
LDV1T is INTEGER The leading dimension of the array V1T. LDV1T >= max(1,Q).
V2T
V2T is REAL array, dimension(LDV2T,M-Q) The (M-Q)-by-(M-Q) orthogonal matrix V2T.
LDV2T
LDV2T is INTEGER The leading dimension of the array V2T. LDV2T >= max(1,M-Q).
THETA
THETA is REAL array, dimension MIN(P,M-P,Q,M-Q) The CS values of X; the essentially diagonal matrices C and S are constructed from THETA; see subroutine SORCSD for details.
IWORK
IWORK is INTEGER array, dimension (M)
WORK
WORK is REAL array, dimension (LWORK)
LWORK
LWORK is INTEGER The dimension of the array WORK
RWORK
RWORK is REAL array
RESULT
RESULT is REAL array, dimension (15) The test ratios: First, the 2-by-2 CSD: RESULT(1) = norm( U1'*X11*V1 - D11 ) / ( MAX(1,P,Q)*EPS2 ) RESULT(2) = norm( U1'*X12*V2 - D12 ) / ( MAX(1,P,M-Q)*EPS2 ) RESULT(3) = norm( U2'*X21*V1 - D21 ) / ( MAX(1,M-P,Q)*EPS2 ) RESULT(4) = norm( U2'*X22*V2 - D22 ) / ( MAX(1,M-P,M-Q)*EPS2 ) RESULT(5) = norm( I - U1'*U1 ) / ( MAX(1,P)*ULP ) RESULT(6) = norm( I - U2'*U2 ) / ( MAX(1,M-P)*ULP ) RESULT(7) = norm( I - V1T'*V1T ) / ( MAX(1,Q)*ULP ) RESULT(8) = norm( I - V2T'*V2T ) / ( MAX(1,M-Q)*ULP ) RESULT(9) = 0 if THETA is in increasing order and all angles are in [0,pi/2]; = ULPINV otherwise. Then, the 2-by-1 CSD: RESULT(10) = norm( U1'*X11*V1 - D11 ) / ( MAX(1,P,Q)*EPS2 ) RESULT(11) = norm( U2'*X21*V1 - D21 ) / ( MAX(1,M-P,Q)*EPS2 ) RESULT(12) = norm( I - U1'*U1 ) / ( MAX(1,P)*ULP ) RESULT(13) = norm( I - U2'*U2 ) / ( MAX(1,M-P)*ULP ) RESULT(14) = norm( I - V1T'*V1T ) / ( MAX(1,Q)*ULP ) RESULT(15) = 0 if THETA is in increasing order and all angles are in [0,pi/2]; = ULPINV otherwise. ( EPS2 = MAX( norm( I - X'*X ) / M, ULP ). )
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 226 of file scsdts.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Referenced By
The man page scsdts(3) is an alias of scsdts.f(3).
Tue Nov 28 2023 12:08:42 Version 3.12.0 LAPACK