sc_MOIndexSpace - Man Page

Class MOIndexSpace describes a range of molecular orbitals or similar objects that are linear combinations of basis functions (e.g.

Synopsis

#include <moindexspace.h>

Inherits sc::SavableState.

Public Types

enum IndexOrder { symmetry = 0, energy = 1, undefined = 2 }
Describes the ordering of indices.

Public Member Functions

MOIndexSpace (StateIn &)
MOIndexSpace (std::string name, const RefSCMatrix &full_coefs, const Ref< GaussianBasisSet > basis, const Ref< Integral > &integral, const vector< int > &offsets, const vector< int > &nmopi, IndexOrder moorder=symmetry, const RefDiagSCMatrix &evals=0)
This function constructs an MOIndexSpace from (blocked) space full_coefs.
MOIndexSpace (std::string name, const RefSCMatrix &full_coefs, const Ref< GaussianBasisSet > basis, const Ref< Integral > &integral, const RefDiagSCMatrix &evals, int nfzc, int nfzv, IndexOrder moorder=energy)
This constructor should be used when the MOIndexSpace object is a subspace of a full orbital space.
MOIndexSpace (std::string name, const RefSCMatrix &full_coefs, const Ref< GaussianBasisSet > basis, const Ref< Integral > &integral)
This constructor should be used when the MOIndexSpace object is the full orbital space.
MOIndexSpace (std::string name, const Ref< MOIndexSpace > &orig_space, const RefSCMatrix &new_coefs, const Ref< GaussianBasisSet > &new_basis)
This constructor is a true hack introduced because I have no idea how to construct what I need.
void save_data_state (StateOut &)
Save the base classes (with save_data_state) and the members in the same order that the StateIn CTOR initializes them.
const std::string name () const
Returns the name of this MOIndexSpace.
const Ref< GaussianBasisSet > basis () const
Returns the AO basis set.
Ref< Integral > integral () const
Returns the integral factory used to instantiate the coefficient matrix.
const RefSCMatrix coefs () const
Returns the coefficient matrix.
const RefDiagSCMatrix evals () const
Returns the 'eigenvalues' matrix.
vector< int > mosym () const
Returns the orbital symmetry array.
IndexOrder moorder () const
Returns the order of the orbitals.
int rank () const
Returns the rank of the space.
int full_rank () const
Returns the rank of the full space.
int nblocks () const
Returns the number of blocks.
vector< int > nmo () const
Returns the number of orbitals in each block.
vector< int > offsets () const
Returns the full-space index of the first orbital in each block.
int to_full_space (const int i) const
Returns the full-space index.
size_t memory_in_use () const
Returns how much 'significant' (i.e. O^2) memory this object uses.
void print (std::ostream &o=ExEnv::out0()) const
Prints out this.
void print_summary (std::ostream &os) const
Produces a short summary.

Public Member Functions inherited from sc::SavableState
SavableState & operator= (const SavableState &)
void save_state (StateOut &)
Save the state of the object as specified by the StateOut object.
void save_object_state (StateOut &)
This can be used for saving state when the exact type of the object is known for both the save and the restore.
virtual void save_vbase_state (StateOut &)
Save the virtual bases for the object.

Public Member Functions inherited from sc::DescribedClass
DescribedClass (const DescribedClass &)
DescribedClass & operator= (const DescribedClass &)
ClassDesc * class_desc () const  throw ()
This returns the unique pointer to the ClassDesc corresponding to the given type_info object.
const char * class_name () const
Return the name of the object's exact type.
int class_version () const
Return the version of the class.

Public Member Functions inherited from sc::RefCount
int lock_ptr () const
Lock this object.
int unlock_ptr () const
Unlock this object.
void use_locks (bool inVal)
start and stop using locks on this object
refcount_t nreference () const
Return the reference count.
refcount_t reference ()
Increment the reference count and return the new count.
refcount_t dereference ()
Decrement the reference count and return the new count.
int managed () const
void unmanage ()
Turn off the reference counting mechanism for this object.
int managed () const
Return 1 if the object is managed. Otherwise return 0.

Public Member Functions inherited from sc::Identity
Identifier identifier ()
Return the Identifier for this argument.

Additional Inherited Members

Static Public Member Functions inherited from sc::SavableState

static void save_state (SavableState *s, StateOut &)
static SavableState * restore_state (StateIn &si)
Restores objects saved with save_state.
static SavableState * key_restore_state (StateIn &si, const char *keyword)
Like restore_state, but keyword is used to override values while restoring.
static SavableState * dir_restore_state (StateIn &si, const char *objectname, const char *keyword=0)

Protected Member Functions inherited from sc::SavableState
SavableState (const SavableState &)
SavableState (StateIn &)
Each derived class StateIn CTOR handles the restore corresponding to calling save_object_state, save_vbase_state, and save_data_state listed above.

Protected Member Functions inherited from sc::RefCount
RefCount (const RefCount &)
RefCount & operator= (const RefCount &)

Detailed Description

Class MOIndexSpace describes a range of molecular orbitals or similar objects that are linear combinations of basis functions (e.g.

atomic orbitals). In general, such sets are subspaces of a full space of orbitals supported by the given basis. Orbitals can be symmetry-blocked, ordered by energy, etc. Examples of sets that can be described using MOIndexSpace are occupied MOs and virtual MOs.

Constructor & Destructor Documentation

sc::MOIndexSpace::MOIndexSpace (std::string name, const RefSCMatrix & full_coefs, const Ref< GaussianBasisSet > basis, const Ref< Integral > & integral, const vector< int > & offsets, const vector< int > & nmopi, IndexOrder moorder = symmetry, const RefDiagSCMatrix & evals = 0)

This function constructs an MOIndexSpace from (blocked) space full_coefs. Block i will contain vectors [ offsets[i], offsets[i]+nmopi[i]-1 ] . By default, the space maintains the same blocked structure and the same order within blocks as the original space (moorder=symmetry). If moorder=energy and eigenvalues evals are provided, then all vectors will be put in one block and sorted according to ascending evals.

Parameters

name -- the name of this MOIndexSpace
full_coefs -- symmetry-blocked transformation coefficient matrix (AO by MO) for the full space
basis -- basis set
integral -- integral factory
offsets -- block offsets
nmopi -- new block sizes
moorder -- specifies new ordering of vectors
evals -- used to sort the vectors

sc::MOIndexSpace::MOIndexSpace (std::string name, const RefSCMatrix & full_coefs, const Ref< GaussianBasisSet > basis, const Ref< Integral > & integral, const RefDiagSCMatrix & evals, int nfzc, int nfzv, IndexOrder moorder = energy)

This constructor should be used when the MOIndexSpace object is a subspace of a full orbital space. Similarly to the previous constructor, it constructs an MOIndexSpace object using a symmetry-blocked transformation coefficient matrix (AO by MO) for the full space, basis set, 'eigenvalues' and the number of orbitals with lowest (nfzc) and highest (nfzv) eigenvalues to be dropped. The orbitals in the constructed space are ordered by energy.

sc::MOIndexSpace::MOIndexSpace (std::string name, const RefSCMatrix & full_coefs, const Ref< GaussianBasisSet > basis, const Ref< Integral > & integral)

This constructor should be used when the MOIndexSpace object is the full orbital space. The orbitals will be symmetry-blocked.

sc::MOIndexSpace::MOIndexSpace (std::string name, const Ref< MOIndexSpace > & orig_space, const RefSCMatrix & new_coefs, const Ref< GaussianBasisSet > & new_basis)

This constructor is a true hack introduced because I have no idea how to construct what I need. It will copy orig_space but replace it's coefs with new_coefs, and its basis with new_basis.

Member Function Documentation

void sc::MOIndexSpace::print (std::ostream & o = ExEnv::out0()) const [virtual]

Prints out this.

Reimplemented from sc::DescribedClass.

void sc::MOIndexSpace::save_data_state (StateOut &) [virtual]

Save the base classes (with save_data_state) and the members in the same order that the StateIn CTOR initializes them. This must be implemented by the derived class if the class has data.

Reimplemented from sc::SavableState.

Author

Generated automatically by Doxygen for MPQC from the source code.

Info

Version 2.3.1 MPQC