# ptsv - Man Page

ptsv: factor and solve

## Synopsis

### Functions

subroutine **cptsv** (n, nrhs, d, e, b, ldb, info)

**CPTSV computes the solution to system of linear equations A * X = B for PT matrices**

subroutine **dptsv** (n, nrhs, d, e, b, ldb, info)

**DPTSV computes the solution to system of linear equations A * X = B for PT matrices**

subroutine **sptsv** (n, nrhs, d, e, b, ldb, info)

**SPTSV computes the solution to system of linear equations A * X = B for PT matrices**

subroutine **zptsv** (n, nrhs, d, e, b, ldb, info)

**ZPTSV computes the solution to system of linear equations A * X = B for PT matrices**

## Detailed Description

## Function Documentation

### subroutine cptsv (integer n, integer nrhs, real, dimension( * ) d, complex, dimension( * ) e, complex, dimension( ldb, * ) b, integer ldb, integer info)

**CPTSV computes the solution to system of linear equations A * X = B for PT matrices**

**Purpose:**

CPTSV computes the solution to a complex system of linear equations A*X = B, where A is an N-by-N Hermitian positive definite tridiagonal matrix, and X and B are N-by-NRHS matrices. A is factored as A = L*D*L**H, and the factored form of A is then used to solve the system of equations.

**Parameters***N*N is INTEGER The order of the matrix A. N >= 0.

*NRHS*NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0.

*D*D is REAL array, dimension (N) On entry, the n diagonal elements of the tridiagonal matrix A. On exit, the n diagonal elements of the diagonal matrix D from the factorization A = L*D*L**H.

*E*E is COMPLEX array, dimension (N-1) On entry, the (n-1) subdiagonal elements of the tridiagonal matrix A. On exit, the (n-1) subdiagonal elements of the unit bidiagonal factor L from the L*D*L**H factorization of A. E can also be regarded as the superdiagonal of the unit bidiagonal factor U from the U**H*D*U factorization of A.

*B*B is COMPLEX array, dimension (LDB,NRHS) On entry, the N-by-NRHS right hand side matrix B. On exit, if INFO = 0, the N-by-NRHS solution matrix X.

*LDB*LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).

*INFO*INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, the leading principal minor of order i is not positive, and the solution has not been computed. The factorization has not been completed unless i = N.

**Author**Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line **114** of file **cptsv.f**.

### subroutine dptsv (integer n, integer nrhs, double precision, dimension( * ) d, double precision, dimension( * ) e, double precision, dimension( ldb, * ) b, integer ldb, integer info)

**DPTSV computes the solution to system of linear equations A * X = B for PT matrices**

**Purpose:**

DPTSV computes the solution to a real system of linear equations A*X = B, where A is an N-by-N symmetric positive definite tridiagonal matrix, and X and B are N-by-NRHS matrices. A is factored as A = L*D*L**T, and the factored form of A is then used to solve the system of equations.

**Parameters***N*N is INTEGER The order of the matrix A. N >= 0.

*NRHS*NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0.

*D*D is DOUBLE PRECISION array, dimension (N) On entry, the n diagonal elements of the tridiagonal matrix A. On exit, the n diagonal elements of the diagonal matrix D from the factorization A = L*D*L**T.

*E*E is DOUBLE PRECISION array, dimension (N-1) On entry, the (n-1) subdiagonal elements of the tridiagonal matrix A. On exit, the (n-1) subdiagonal elements of the unit bidiagonal factor L from the L*D*L**T factorization of A. (E can also be regarded as the superdiagonal of the unit bidiagonal factor U from the U**T*D*U factorization of A.)

*B*B is DOUBLE PRECISION array, dimension (LDB,NRHS) On entry, the N-by-NRHS right hand side matrix B. On exit, if INFO = 0, the N-by-NRHS solution matrix X.

*LDB*LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).

*INFO*INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, the leading principal minor of order i is not positive, and the solution has not been computed. The factorization has not been completed unless i = N.

**Author**Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line **113** of file **dptsv.f**.

### subroutine sptsv (integer n, integer nrhs, real, dimension( * ) d, real, dimension( * ) e, real, dimension( ldb, * ) b, integer ldb, integer info)

**SPTSV computes the solution to system of linear equations A * X = B for PT matrices**

**Purpose:**

SPTSV computes the solution to a real system of linear equations A*X = B, where A is an N-by-N symmetric positive definite tridiagonal matrix, and X and B are N-by-NRHS matrices. A is factored as A = L*D*L**T, and the factored form of A is then used to solve the system of equations.

**Parameters***N*N is INTEGER The order of the matrix A. N >= 0.

*NRHS*NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0.

*D*D is REAL array, dimension (N) On entry, the n diagonal elements of the tridiagonal matrix A. On exit, the n diagonal elements of the diagonal matrix D from the factorization A = L*D*L**T.

*E*E is REAL array, dimension (N-1) On entry, the (n-1) subdiagonal elements of the tridiagonal matrix A. On exit, the (n-1) subdiagonal elements of the unit bidiagonal factor L from the L*D*L**T factorization of A. (E can also be regarded as the superdiagonal of the unit bidiagonal factor U from the U**T*D*U factorization of A.)

*B*B is REAL array, dimension (LDB,NRHS) On entry, the N-by-NRHS right hand side matrix B. On exit, if INFO = 0, the N-by-NRHS solution matrix X.

*LDB*LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).

*INFO*INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, the leading principal minor of order i is not positive, and the solution has not been computed. The factorization has not been completed unless i = N.

**Author**Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line **113** of file **sptsv.f**.

### subroutine zptsv (integer n, integer nrhs, double precision, dimension( * ) d, complex*16, dimension( * ) e, complex*16, dimension( ldb, * ) b, integer ldb, integer info)

**ZPTSV computes the solution to system of linear equations A * X = B for PT matrices**

**Purpose:**

ZPTSV computes the solution to a complex system of linear equations A*X = B, where A is an N-by-N Hermitian positive definite tridiagonal matrix, and X and B are N-by-NRHS matrices. A is factored as A = L*D*L**H, and the factored form of A is then used to solve the system of equations.

**Parameters***N*N is INTEGER The order of the matrix A. N >= 0.

*NRHS**D*D is DOUBLE PRECISION array, dimension (N) On entry, the n diagonal elements of the tridiagonal matrix A. On exit, the n diagonal elements of the diagonal matrix D from the factorization A = L*D*L**H.

*E*E is COMPLEX*16 array, dimension (N-1) On entry, the (n-1) subdiagonal elements of the tridiagonal matrix A. On exit, the (n-1) subdiagonal elements of the unit bidiagonal factor L from the L*D*L**H factorization of A. E can also be regarded as the superdiagonal of the unit bidiagonal factor U from the U**H*D*U factorization of A.

*B*B is COMPLEX*16 array, dimension (LDB,NRHS) On entry, the N-by-NRHS right hand side matrix B. On exit, if INFO = 0, the N-by-NRHS solution matrix X.

*LDB*LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).

*INFO***Author**Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line **114** of file **zptsv.f**.

## Author

Generated automatically by Doxygen for LAPACK from the source code.