# pbtrs - Man Page

pbtrs: triangular solve using factor

## Synopsis

### Functions

subroutine **cpbtrs** (uplo, n, kd, nrhs, ab, ldab, b, ldb, info)**CPBTRS**

subroutine **dpbtrs** (uplo, n, kd, nrhs, ab, ldab, b, ldb, info)**DPBTRS**

subroutine **spbtrs** (uplo, n, kd, nrhs, ab, ldab, b, ldb, info)**SPBTRS**

subroutine **zpbtrs** (uplo, n, kd, nrhs, ab, ldab, b, ldb, info)**ZPBTRS**

## Detailed Description

## Function Documentation

### subroutine cpbtrs (character uplo, integer n, integer kd, integer nrhs, complex, dimension( ldab, * ) ab, integer ldab, complex, dimension( ldb, * ) b, integer ldb, integer info)

**CPBTRS**

**Purpose:**

CPBTRS solves a system of linear equations A*X = B with a Hermitian positive definite band matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by CPBTRF.

**Parameters***UPLO*UPLO is CHARACTER*1 = 'U': Upper triangular factor stored in AB; = 'L': Lower triangular factor stored in AB.

*N*N is INTEGER The order of the matrix A. N >= 0.

*KD*KD is INTEGER The number of superdiagonals of the matrix A if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'. KD >= 0.

*NRHS*NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0.

*AB*AB is COMPLEX array, dimension (LDAB,N) The triangular factor U or L from the Cholesky factorization A = U**H*U or A = L*L**H of the band matrix A, stored in the first KD+1 rows of the array. The j-th column of U or L is stored in the j-th column of the array AB as follows: if UPLO ='U', AB(kd+1+i-j,j) = U(i,j) for max(1,j-kd)<=i<=j; if UPLO ='L', AB(1+i-j,j) = L(i,j) for j<=i<=min(n,j+kd).

*LDAB*LDAB is INTEGER The leading dimension of the array AB. LDAB >= KD+1.

*B*B is COMPLEX array, dimension (LDB,NRHS) On entry, the right hand side matrix B. On exit, the solution matrix X.

*LDB*LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).

*INFO*INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value

**Author**Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line **120** of file **cpbtrs.f**.

### subroutine dpbtrs (character uplo, integer n, integer kd, integer nrhs, double precision, dimension( ldab, * ) ab, integer ldab, double precision, dimension( ldb, * ) b, integer ldb, integer info)

**DPBTRS**

**Purpose:**

DPBTRS solves a system of linear equations A*X = B with a symmetric positive definite band matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by DPBTRF.

**Parameters***UPLO*UPLO is CHARACTER*1 = 'U': Upper triangular factor stored in AB; = 'L': Lower triangular factor stored in AB.

*N*N is INTEGER The order of the matrix A. N >= 0.

*KD*KD is INTEGER The number of superdiagonals of the matrix A if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'. KD >= 0.

*NRHS*NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0.

*AB*AB is DOUBLE PRECISION array, dimension (LDAB,N) The triangular factor U or L from the Cholesky factorization A = U**T*U or A = L*L**T of the band matrix A, stored in the first KD+1 rows of the array. The j-th column of U or L is stored in the j-th column of the array AB as follows: if UPLO ='U', AB(kd+1+i-j,j) = U(i,j) for max(1,j-kd)<=i<=j; if UPLO ='L', AB(1+i-j,j) = L(i,j) for j<=i<=min(n,j+kd).

*LDAB*LDAB is INTEGER The leading dimension of the array AB. LDAB >= KD+1.

*B*B is DOUBLE PRECISION array, dimension (LDB,NRHS) On entry, the right hand side matrix B. On exit, the solution matrix X.

*LDB*LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).

*INFO*INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value

**Author**Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line **120** of file **dpbtrs.f**.

### subroutine spbtrs (character uplo, integer n, integer kd, integer nrhs, real, dimension( ldab, * ) ab, integer ldab, real, dimension( ldb, * ) b, integer ldb, integer info)

**SPBTRS**

**Purpose:**

SPBTRS solves a system of linear equations A*X = B with a symmetric positive definite band matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by SPBTRF.

**Parameters***UPLO*UPLO is CHARACTER*1 = 'U': Upper triangular factor stored in AB; = 'L': Lower triangular factor stored in AB.

*N*N is INTEGER The order of the matrix A. N >= 0.

*KD*KD is INTEGER The number of superdiagonals of the matrix A if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'. KD >= 0.

*NRHS*NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0.

*AB*AB is REAL array, dimension (LDAB,N) The triangular factor U or L from the Cholesky factorization A = U**T*U or A = L*L**T of the band matrix A, stored in the first KD+1 rows of the array. The j-th column of U or L is stored in the j-th column of the array AB as follows: if UPLO ='U', AB(kd+1+i-j,j) = U(i,j) for max(1,j-kd)<=i<=j; if UPLO ='L', AB(1+i-j,j) = L(i,j) for j<=i<=min(n,j+kd).

*LDAB*LDAB is INTEGER The leading dimension of the array AB. LDAB >= KD+1.

*B*B is REAL array, dimension (LDB,NRHS) On entry, the right hand side matrix B. On exit, the solution matrix X.

*LDB*LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).

*INFO*INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value

**Author**Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line **120** of file **spbtrs.f**.

### subroutine zpbtrs (character uplo, integer n, integer kd, integer nrhs, complex*16, dimension( ldab, * ) ab, integer ldab, complex*16, dimension( ldb, * ) b, integer ldb, integer info)

**ZPBTRS**

**Purpose:**

ZPBTRS solves a system of linear equations A*X = B with a Hermitian positive definite band matrix A using the Cholesky factorization A = U**H *U or A = L*L**H computed by ZPBTRF.

**Parameters***UPLO**N*N is INTEGER The order of the matrix A. N >= 0.

*KD**NRHS**AB*AB is COMPLEX*16 array, dimension (LDAB,N) The triangular factor U or L from the Cholesky factorization A = U**H *U or A = L*L**H of the band matrix A, stored in the first KD+1 rows of the array. The j-th column of U or L is stored in the j-th column of the array AB as follows: if UPLO ='U', AB(kd+1+i-j,j) = U(i,j) for max(1,j-kd)<=i<=j; if UPLO ='L', AB(1+i-j,j) = L(i,j) for j<=i<=min(n,j+kd).

*LDAB*LDAB is INTEGER The leading dimension of the array AB. LDAB >= KD+1.

*B*B is COMPLEX*16 array, dimension (LDB,NRHS) On entry, the right hand side matrix B. On exit, the solution matrix X.

*LDB*LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).

*INFO*INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value

**Author**Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line **120** of file **zpbtrs.f**.

## Author

Generated automatically by Doxygen for LAPACK from the source code.