# pbsv - Man Page

pbsv: factor and solve

## Synopsis

### Functions

subroutine cpbsv (uplo, n, kd, nrhs, ab, ldab, b, ldb, info)
CPBSV computes the solution to system of linear equations A * X = B for OTHER matrices
subroutine dpbsv (uplo, n, kd, nrhs, ab, ldab, b, ldb, info)
DPBSV computes the solution to system of linear equations A * X = B for OTHER matrices
subroutine spbsv (uplo, n, kd, nrhs, ab, ldab, b, ldb, info)
SPBSV computes the solution to system of linear equations A * X = B for OTHER matrices
subroutine zpbsv (uplo, n, kd, nrhs, ab, ldab, b, ldb, info)
ZPBSV computes the solution to system of linear equations A * X = B for OTHER matrices

## Function Documentation

### subroutine cpbsv (character uplo, integer n, integer kd, integer nrhs, complex, dimension( ldab, * ) ab, integer ldab, complex, dimension( ldb, * ) b, integer ldb, integer info)

CPBSV computes the solution to system of linear equations A * X = B for OTHER matrices

Purpose:

``` CPBSV computes the solution to a complex system of linear equations
A * X = B,
where A is an N-by-N Hermitian positive definite band matrix and X
and B are N-by-NRHS matrices.

The Cholesky decomposition is used to factor A as
A = U**H * U,  if UPLO = 'U', or
A = L * L**H,  if UPLO = 'L',
where U is an upper triangular band matrix, and L is a lower
triangular band matrix, with the same number of superdiagonals or
subdiagonals as A.  The factored form of A is then used to solve the
system of equations A * X = B.```
Parameters

UPLO

```          UPLO is CHARACTER*1
= 'U':  Upper triangle of A is stored;
= 'L':  Lower triangle of A is stored.```

N

```          N is INTEGER
The number of linear equations, i.e., the order of the
matrix A.  N >= 0.```

KD

```          KD is INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'.  KD >= 0.```

NRHS

```          NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B.  NRHS >= 0.```

AB

```          AB is COMPLEX array, dimension (LDAB,N)
On entry, the upper or lower triangle of the Hermitian band
matrix A, stored in the first KD+1 rows of the array.  The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(KD+1+i-j,j) = A(i,j) for max(1,j-KD)<=i<=j;
if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(N,j+KD).
See below for further details.

On exit, if INFO = 0, the triangular factor U or L from the
Cholesky factorization A = U**H*U or A = L*L**H of the band
matrix A, in the same storage format as A.```

LDAB

```          LDAB is INTEGER
The leading dimension of the array AB.  LDAB >= KD+1.```

B

```          B is COMPLEX array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if INFO = 0, the N-by-NRHS solution matrix X.```

LDB

```          LDB is INTEGER
The leading dimension of the array B.  LDB >= max(1,N).```

INFO

```          INFO is INTEGER
= 0:  successful exit
< 0:  if INFO = -i, the i-th argument had an illegal value
> 0:  if INFO = i, the leading principal minor of order i
of A is not positive, so the factorization could not
be completed, and the solution has not been computed.```
Author

Univ. of Tennessee

Univ. of California Berkeley

NAG Ltd.

Further Details:

```  The band storage scheme is illustrated by the following example, when
N = 6, KD = 2, and UPLO = 'U':

On entry:                       On exit:

*    *   a13  a24  a35  a46      *    *   u13  u24  u35  u46
*   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56
a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66

Similarly, if UPLO = 'L' the format of A is as follows:

On entry:                       On exit:

a11  a22  a33  a44  a55  a66     l11  l22  l33  l44  l55  l66
a21  a32  a43  a54  a65   *      l21  l32  l43  l54  l65   *
a31  a42  a53  a64   *    *      l31  l42  l53  l64   *    *

Array elements marked * are not used by the routine.```

Definition at line 163 of file cpbsv.f.

### subroutine dpbsv (character uplo, integer n, integer kd, integer nrhs, double precision, dimension( ldab, * ) ab, integer ldab, double precision, dimension( ldb, * ) b, integer ldb, integer info)

DPBSV computes the solution to system of linear equations A * X = B for OTHER matrices

Purpose:

``` DPBSV computes the solution to a real system of linear equations
A * X = B,
where A is an N-by-N symmetric positive definite band matrix and X
and B are N-by-NRHS matrices.

The Cholesky decomposition is used to factor A as
A = U**T * U,  if UPLO = 'U', or
A = L * L**T,  if UPLO = 'L',
where U is an upper triangular band matrix, and L is a lower
triangular band matrix, with the same number of superdiagonals or
subdiagonals as A.  The factored form of A is then used to solve the
system of equations A * X = B.```
Parameters

UPLO

```          UPLO is CHARACTER*1
= 'U':  Upper triangle of A is stored;
= 'L':  Lower triangle of A is stored.```

N

```          N is INTEGER
The number of linear equations, i.e., the order of the
matrix A.  N >= 0.```

KD

```          KD is INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'.  KD >= 0.```

NRHS

```          NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B.  NRHS >= 0.```

AB

```          AB is DOUBLE PRECISION array, dimension (LDAB,N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first KD+1 rows of the array.  The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(KD+1+i-j,j) = A(i,j) for max(1,j-KD)<=i<=j;
if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(N,j+KD).
See below for further details.

On exit, if INFO = 0, the triangular factor U or L from the
Cholesky factorization A = U**T*U or A = L*L**T of the band
matrix A, in the same storage format as A.```

LDAB

```          LDAB is INTEGER
The leading dimension of the array AB.  LDAB >= KD+1.```

B

```          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if INFO = 0, the N-by-NRHS solution matrix X.```

LDB

```          LDB is INTEGER
The leading dimension of the array B.  LDB >= max(1,N).```

INFO

```          INFO is INTEGER
= 0:  successful exit
< 0:  if INFO = -i, the i-th argument had an illegal value
> 0:  if INFO = i, the leading principal minor of order i
of A is not positive, so the factorization could not
be completed, and the solution has not been computed.```
Author

Univ. of Tennessee

Univ. of California Berkeley

NAG Ltd.

Further Details:

```  The band storage scheme is illustrated by the following example, when
N = 6, KD = 2, and UPLO = 'U':

On entry:                       On exit:

*    *   a13  a24  a35  a46      *    *   u13  u24  u35  u46
*   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56
a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66

Similarly, if UPLO = 'L' the format of A is as follows:

On entry:                       On exit:

a11  a22  a33  a44  a55  a66     l11  l22  l33  l44  l55  l66
a21  a32  a43  a54  a65   *      l21  l32  l43  l54  l65   *
a31  a42  a53  a64   *    *      l31  l42  l53  l64   *    *

Array elements marked * are not used by the routine.```

Definition at line 163 of file dpbsv.f.

### subroutine spbsv (character uplo, integer n, integer kd, integer nrhs, real, dimension( ldab, * ) ab, integer ldab, real, dimension( ldb, * ) b, integer ldb, integer info)

SPBSV computes the solution to system of linear equations A * X = B for OTHER matrices

Purpose:

``` SPBSV computes the solution to a real system of linear equations
A * X = B,
where A is an N-by-N symmetric positive definite band matrix and X
and B are N-by-NRHS matrices.

The Cholesky decomposition is used to factor A as
A = U**T * U,  if UPLO = 'U', or
A = L * L**T,  if UPLO = 'L',
where U is an upper triangular band matrix, and L is a lower
triangular band matrix, with the same number of superdiagonals or
subdiagonals as A.  The factored form of A is then used to solve the
system of equations A * X = B.```
Parameters

UPLO

```          UPLO is CHARACTER*1
= 'U':  Upper triangle of A is stored;
= 'L':  Lower triangle of A is stored.```

N

```          N is INTEGER
The number of linear equations, i.e., the order of the
matrix A.  N >= 0.```

KD

```          KD is INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'.  KD >= 0.```

NRHS

```          NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B.  NRHS >= 0.```

AB

```          AB is REAL array, dimension (LDAB,N)
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first KD+1 rows of the array.  The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(KD+1+i-j,j) = A(i,j) for max(1,j-KD)<=i<=j;
if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(N,j+KD).
See below for further details.

On exit, if INFO = 0, the triangular factor U or L from the
Cholesky factorization A = U**T*U or A = L*L**T of the band
matrix A, in the same storage format as A.```

LDAB

```          LDAB is INTEGER
The leading dimension of the array AB.  LDAB >= KD+1.```

B

```          B is REAL array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if INFO = 0, the N-by-NRHS solution matrix X.```

LDB

```          LDB is INTEGER
The leading dimension of the array B.  LDB >= max(1,N).```

INFO

```          INFO is INTEGER
= 0:  successful exit
< 0:  if INFO = -i, the i-th argument had an illegal value
> 0:  if INFO = i, the leading principal minor of order i
of A is not positive, so the factorization could not
be completed, and the solution has not been computed.```
Author

Univ. of Tennessee

Univ. of California Berkeley

NAG Ltd.

Further Details:

```  The band storage scheme is illustrated by the following example, when
N = 6, KD = 2, and UPLO = 'U':

On entry:                       On exit:

*    *   a13  a24  a35  a46      *    *   u13  u24  u35  u46
*   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56
a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66

Similarly, if UPLO = 'L' the format of A is as follows:

On entry:                       On exit:

a11  a22  a33  a44  a55  a66     l11  l22  l33  l44  l55  l66
a21  a32  a43  a54  a65   *      l21  l32  l43  l54  l65   *
a31  a42  a53  a64   *    *      l31  l42  l53  l64   *    *

Array elements marked * are not used by the routine.```

Definition at line 163 of file spbsv.f.

### subroutine zpbsv (character uplo, integer n, integer kd, integer nrhs, complex*16, dimension( ldab, * ) ab, integer ldab, complex*16, dimension( ldb, * ) b, integer ldb, integer info)

ZPBSV computes the solution to system of linear equations A * X = B for OTHER matrices

Purpose:

``` ZPBSV computes the solution to a complex system of linear equations
A * X = B,
where A is an N-by-N Hermitian positive definite band matrix and X
and B are N-by-NRHS matrices.

The Cholesky decomposition is used to factor A as
A = U**H * U,  if UPLO = 'U', or
A = L * L**H,  if UPLO = 'L',
where U is an upper triangular band matrix, and L is a lower
triangular band matrix, with the same number of superdiagonals or
subdiagonals as A.  The factored form of A is then used to solve the
system of equations A * X = B.```
Parameters

UPLO

```          UPLO is CHARACTER*1
= 'U':  Upper triangle of A is stored;
= 'L':  Lower triangle of A is stored.```

N

```          N is INTEGER
The number of linear equations, i.e., the order of the
matrix A.  N >= 0.```

KD

```          KD is INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'.  KD >= 0.```

NRHS

```          NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B.  NRHS >= 0.```

AB

```          AB is COMPLEX*16 array, dimension (LDAB,N)
On entry, the upper or lower triangle of the Hermitian band
matrix A, stored in the first KD+1 rows of the array.  The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(KD+1+i-j,j) = A(i,j) for max(1,j-KD)<=i<=j;
if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(N,j+KD).
See below for further details.

On exit, if INFO = 0, the triangular factor U or L from the
Cholesky factorization A = U**H *U or A = L*L**H of the band
matrix A, in the same storage format as A.```

LDAB

```          LDAB is INTEGER
The leading dimension of the array AB.  LDAB >= KD+1.```

B

```          B is COMPLEX*16 array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if INFO = 0, the N-by-NRHS solution matrix X.```

LDB

```          LDB is INTEGER
The leading dimension of the array B.  LDB >= max(1,N).```

INFO

```          INFO is INTEGER
= 0:  successful exit
< 0:  if INFO = -i, the i-th argument had an illegal value
> 0:  if INFO = i, the leading principal minor of order i
of A is not positive, so the factorization could not
be completed, and the solution has not been computed.```
Author

Univ. of Tennessee

Univ. of California Berkeley

NAG Ltd.

Further Details:

```  The band storage scheme is illustrated by the following example, when
N = 6, KD = 2, and UPLO = 'U':

On entry:                       On exit:

*    *   a13  a24  a35  a46      *    *   u13  u24  u35  u46
*   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56
a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66

Similarly, if UPLO = 'L' the format of A is as follows:

On entry:                       On exit:

a11  a22  a33  a44  a55  a66     l11  l22  l33  l44  l55  l66
a21  a32  a43  a54  a65   *      l21  l32  l43  l54  l65   *
a31  a42  a53  a64   *    *      l31  l42  l53  l64   *    *

Array elements marked * are not used by the routine.```

Definition at line 163 of file zpbsv.f.

## Author

Generated automatically by Doxygen for LAPACK from the source code.

## Info

Tue Nov 28 2023 12:08:43 Version 3.12.0 LAPACK