Sponsor:

Your company here, and a link to your site. Click to find out more.

lanhb - Man Page

lan{hb,sb}: Hermitian/symmetric matrix, banded

Synopsis

Functions

real function clanhb (norm, uplo, n, k, ab, ldab, work)
CLANHB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a Hermitian band matrix.
real function clansb (norm, uplo, n, k, ab, ldab, work)
CLANSB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric band matrix.
double precision function dlansb (norm, uplo, n, k, ab, ldab, work)
DLANSB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric band matrix.
real function slansb (norm, uplo, n, k, ab, ldab, work)
SLANSB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric band matrix.
double precision function zlanhb (norm, uplo, n, k, ab, ldab, work)
ZLANHB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a Hermitian band matrix.
double precision function zlansb (norm, uplo, n, k, ab, ldab, work)
ZLANSB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric band matrix.

Detailed Description

Function Documentation

real function clanhb (character norm, character uplo, integer n, integer k, complex, dimension( ldab, * ) ab, integer ldab, real, dimension( * ) work)

CLANHB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a Hermitian band matrix.  

Purpose:

 CLANHB  returns the value of the one norm,  or the Frobenius norm, or
 the  infinity norm,  or the element of  largest absolute value  of an
 n by n hermitian band matrix A,  with k super-diagonals.
Returns

CLANHB

    CLANHB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
             (
             ( norm1(A),         NORM = '1', 'O' or 'o'
             (
             ( normI(A),         NORM = 'I' or 'i'
             (
             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'

 where  norm1  denotes the  one norm of a matrix (maximum column sum),
 normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
 normF  denotes the  Frobenius norm of a matrix (square root of sum of
 squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
Parameters

NORM

          NORM is CHARACTER*1
          Specifies the value to be returned in CLANHB as described
          above.

UPLO

          UPLO is CHARACTER*1
          Specifies whether the upper or lower triangular part of the
          band matrix A is supplied.
          = 'U':  Upper triangular
          = 'L':  Lower triangular

N

          N is INTEGER
          The order of the matrix A.  N >= 0.  When N = 0, CLANHB is
          set to zero.

K

          K is INTEGER
          The number of super-diagonals or sub-diagonals of the
          band matrix A.  K >= 0.

AB

          AB is COMPLEX array, dimension (LDAB,N)
          The upper or lower triangle of the hermitian band matrix A,
          stored in the first K+1 rows of AB.  The j-th column of A is
          stored in the j-th column of the array AB as follows:
          if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j;
          if UPLO = 'L', AB(1+i-j,j)   = A(i,j) for j<=i<=min(n,j+k).
          Note that the imaginary parts of the diagonal elements need
          not be set and are assumed to be zero.

LDAB

          LDAB is INTEGER
          The leading dimension of the array AB.  LDAB >= K+1.

WORK

          WORK is REAL array, dimension (MAX(1,LWORK)),
          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
          WORK is not referenced.
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 130 of file clanhb.f.

real function clansb (character norm, character uplo, integer n, integer k, complex, dimension( ldab, * ) ab, integer ldab, real, dimension( * ) work)

CLANSB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric band matrix.  

Purpose:

 CLANSB  returns the value of the one norm,  or the Frobenius norm, or
 the  infinity norm,  or the element of  largest absolute value  of an
 n by n symmetric band matrix A,  with k super-diagonals.
Returns

CLANSB

    CLANSB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
             (
             ( norm1(A),         NORM = '1', 'O' or 'o'
             (
             ( normI(A),         NORM = 'I' or 'i'
             (
             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'

 where  norm1  denotes the  one norm of a matrix (maximum column sum),
 normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
 normF  denotes the  Frobenius norm of a matrix (square root of sum of
 squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
Parameters

NORM

          NORM is CHARACTER*1
          Specifies the value to be returned in CLANSB as described
          above.

UPLO

          UPLO is CHARACTER*1
          Specifies whether the upper or lower triangular part of the
          band matrix A is supplied.
          = 'U':  Upper triangular part is supplied
          = 'L':  Lower triangular part is supplied

N

          N is INTEGER
          The order of the matrix A.  N >= 0.  When N = 0, CLANSB is
          set to zero.

K

          K is INTEGER
          The number of super-diagonals or sub-diagonals of the
          band matrix A.  K >= 0.

AB

          AB is COMPLEX array, dimension (LDAB,N)
          The upper or lower triangle of the symmetric band matrix A,
          stored in the first K+1 rows of AB.  The j-th column of A is
          stored in the j-th column of the array AB as follows:
          if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j;
          if UPLO = 'L', AB(1+i-j,j)   = A(i,j) for j<=i<=min(n,j+k).

LDAB

          LDAB is INTEGER
          The leading dimension of the array AB.  LDAB >= K+1.

WORK

          WORK is REAL array, dimension (MAX(1,LWORK)),
          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
          WORK is not referenced.
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 128 of file clansb.f.

double precision function dlansb (character norm, character uplo, integer n, integer k, double precision, dimension( ldab, * ) ab, integer ldab, double precision, dimension( * ) work)

DLANSB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric band matrix.  

Purpose:

 DLANSB  returns the value of the one norm,  or the Frobenius norm, or
 the  infinity norm,  or the element of  largest absolute value  of an
 n by n symmetric band matrix A,  with k super-diagonals.
Returns

DLANSB

    DLANSB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
             (
             ( norm1(A),         NORM = '1', 'O' or 'o'
             (
             ( normI(A),         NORM = 'I' or 'i'
             (
             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'

 where  norm1  denotes the  one norm of a matrix (maximum column sum),
 normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
 normF  denotes the  Frobenius norm of a matrix (square root of sum of
 squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
Parameters

NORM

          NORM is CHARACTER*1
          Specifies the value to be returned in DLANSB as described
          above.

UPLO

          UPLO is CHARACTER*1
          Specifies whether the upper or lower triangular part of the
          band matrix A is supplied.
          = 'U':  Upper triangular part is supplied
          = 'L':  Lower triangular part is supplied

N

          N is INTEGER
          The order of the matrix A.  N >= 0.  When N = 0, DLANSB is
          set to zero.

K

          K is INTEGER
          The number of super-diagonals or sub-diagonals of the
          band matrix A.  K >= 0.

AB

          AB is DOUBLE PRECISION array, dimension (LDAB,N)
          The upper or lower triangle of the symmetric band matrix A,
          stored in the first K+1 rows of AB.  The j-th column of A is
          stored in the j-th column of the array AB as follows:
          if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j;
          if UPLO = 'L', AB(1+i-j,j)   = A(i,j) for j<=i<=min(n,j+k).

LDAB

          LDAB is INTEGER
          The leading dimension of the array AB.  LDAB >= K+1.

WORK

          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
          WORK is not referenced.
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 127 of file dlansb.f.

real function slansb (character norm, character uplo, integer n, integer k, real, dimension( ldab, * ) ab, integer ldab, real, dimension( * ) work)

SLANSB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric band matrix.  

Purpose:

 SLANSB  returns the value of the one norm,  or the Frobenius norm, or
 the  infinity norm,  or the element of  largest absolute value  of an
 n by n symmetric band matrix A,  with k super-diagonals.
Returns

SLANSB

    SLANSB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
             (
             ( norm1(A),         NORM = '1', 'O' or 'o'
             (
             ( normI(A),         NORM = 'I' or 'i'
             (
             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'

 where  norm1  denotes the  one norm of a matrix (maximum column sum),
 normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
 normF  denotes the  Frobenius norm of a matrix (square root of sum of
 squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
Parameters

NORM

          NORM is CHARACTER*1
          Specifies the value to be returned in SLANSB as described
          above.

UPLO

          UPLO is CHARACTER*1
          Specifies whether the upper or lower triangular part of the
          band matrix A is supplied.
          = 'U':  Upper triangular part is supplied
          = 'L':  Lower triangular part is supplied

N

          N is INTEGER
          The order of the matrix A.  N >= 0.  When N = 0, SLANSB is
          set to zero.

K

          K is INTEGER
          The number of super-diagonals or sub-diagonals of the
          band matrix A.  K >= 0.

AB

          AB is REAL array, dimension (LDAB,N)
          The upper or lower triangle of the symmetric band matrix A,
          stored in the first K+1 rows of AB.  The j-th column of A is
          stored in the j-th column of the array AB as follows:
          if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j;
          if UPLO = 'L', AB(1+i-j,j)   = A(i,j) for j<=i<=min(n,j+k).

LDAB

          LDAB is INTEGER
          The leading dimension of the array AB.  LDAB >= K+1.

WORK

          WORK is REAL array, dimension (MAX(1,LWORK)),
          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
          WORK is not referenced.
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 127 of file slansb.f.

double precision function zlanhb (character norm, character uplo, integer n, integer k, complex*16, dimension( ldab, * ) ab, integer ldab, double precision, dimension( * ) work)

ZLANHB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a Hermitian band matrix.  

Purpose:

 ZLANHB  returns the value of the one norm,  or the Frobenius norm, or
 the  infinity norm,  or the element of  largest absolute value  of an
 n by n hermitian band matrix A,  with k super-diagonals.
Returns

ZLANHB

    ZLANHB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
             (
             ( norm1(A),         NORM = '1', 'O' or 'o'
             (
             ( normI(A),         NORM = 'I' or 'i'
             (
             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'

 where  norm1  denotes the  one norm of a matrix (maximum column sum),
 normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
 normF  denotes the  Frobenius norm of a matrix (square root of sum of
 squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
Parameters

NORM

          NORM is CHARACTER*1
          Specifies the value to be returned in ZLANHB as described
          above.

UPLO

          UPLO is CHARACTER*1
          Specifies whether the upper or lower triangular part of the
          band matrix A is supplied.
          = 'U':  Upper triangular
          = 'L':  Lower triangular

N

          N is INTEGER
          The order of the matrix A.  N >= 0.  When N = 0, ZLANHB is
          set to zero.

K

          K is INTEGER
          The number of super-diagonals or sub-diagonals of the
          band matrix A.  K >= 0.

AB

          AB is COMPLEX*16 array, dimension (LDAB,N)
          The upper or lower triangle of the hermitian band matrix A,
          stored in the first K+1 rows of AB.  The j-th column of A is
          stored in the j-th column of the array AB as follows:
          if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j;
          if UPLO = 'L', AB(1+i-j,j)   = A(i,j) for j<=i<=min(n,j+k).
          Note that the imaginary parts of the diagonal elements need
          not be set and are assumed to be zero.

LDAB

          LDAB is INTEGER
          The leading dimension of the array AB.  LDAB >= K+1.

WORK

          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
          WORK is not referenced.
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 130 of file zlanhb.f.

double precision function zlansb (character norm, character uplo, integer n, integer k, complex*16, dimension( ldab, * ) ab, integer ldab, double precision, dimension( * ) work)

ZLANSB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric band matrix.  

Purpose:

 ZLANSB  returns the value of the one norm,  or the Frobenius norm, or
 the  infinity norm,  or the element of  largest absolute value  of an
 n by n symmetric band matrix A,  with k super-diagonals.
Returns

ZLANSB

    ZLANSB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
             (
             ( norm1(A),         NORM = '1', 'O' or 'o'
             (
             ( normI(A),         NORM = 'I' or 'i'
             (
             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'

 where  norm1  denotes the  one norm of a matrix (maximum column sum),
 normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
 normF  denotes the  Frobenius norm of a matrix (square root of sum of
 squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
Parameters

NORM

          NORM is CHARACTER*1
          Specifies the value to be returned in ZLANSB as described
          above.

UPLO

          UPLO is CHARACTER*1
          Specifies whether the upper or lower triangular part of the
          band matrix A is supplied.
          = 'U':  Upper triangular part is supplied
          = 'L':  Lower triangular part is supplied

N

          N is INTEGER
          The order of the matrix A.  N >= 0.  When N = 0, ZLANSB is
          set to zero.

K

          K is INTEGER
          The number of super-diagonals or sub-diagonals of the
          band matrix A.  K >= 0.

AB

          AB is COMPLEX*16 array, dimension (LDAB,N)
          The upper or lower triangle of the symmetric band matrix A,
          stored in the first K+1 rows of AB.  The j-th column of A is
          stored in the j-th column of the array AB as follows:
          if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j;
          if UPLO = 'L', AB(1+i-j,j)   = A(i,j) for j<=i<=min(n,j+k).

LDAB

          LDAB is INTEGER
          The leading dimension of the array AB.  LDAB >= K+1.

WORK

          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
          WORK is not referenced.
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 128 of file zlansb.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Info

Tue Nov 28 2023 12:08:43 Version 3.12.0 LAPACK