Sponsor:

Your company here, and a link to your site. Click to find out more.

hptri - Man Page

{hp,sp}tri: triangular inverse

Synopsis

Functions

subroutine chptri (uplo, n, ap, ipiv, work, info)
CHPTRI
subroutine csptri (uplo, n, ap, ipiv, work, info)
CSPTRI
subroutine dsptri (uplo, n, ap, ipiv, work, info)
DSPTRI
subroutine ssptri (uplo, n, ap, ipiv, work, info)
SSPTRI
subroutine zhptri (uplo, n, ap, ipiv, work, info)
ZHPTRI
subroutine zsptri (uplo, n, ap, ipiv, work, info)
ZSPTRI

Detailed Description

Function Documentation

subroutine chptri (character uplo, integer n, complex, dimension( * ) ap, integer, dimension( * ) ipiv, complex, dimension( * ) work, integer info)

CHPTRI  

Purpose:

 CHPTRI computes the inverse of a complex Hermitian indefinite matrix
 A in packed storage using the factorization A = U*D*U**H or
 A = L*D*L**H computed by CHPTRF.
Parameters

UPLO

          UPLO is CHARACTER*1
          Specifies whether the details of the factorization are stored
          as an upper or lower triangular matrix.
          = 'U':  Upper triangular, form is A = U*D*U**H;
          = 'L':  Lower triangular, form is A = L*D*L**H.

N

          N is INTEGER
          The order of the matrix A.  N >= 0.

AP

          AP is COMPLEX array, dimension (N*(N+1)/2)
          On entry, the block diagonal matrix D and the multipliers
          used to obtain the factor U or L as computed by CHPTRF,
          stored as a packed triangular matrix.

          On exit, if INFO = 0, the (Hermitian) inverse of the original
          matrix, stored as a packed triangular matrix. The j-th column
          of inv(A) is stored in the array AP as follows:
          if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j;
          if UPLO = 'L',
             AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n.

IPIV

          IPIV is INTEGER array, dimension (N)
          Details of the interchanges and the block structure of D
          as determined by CHPTRF.

WORK

          WORK is COMPLEX array, dimension (N)

INFO

          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
          > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
               inverse could not be computed.
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 108 of file chptri.f.

subroutine csptri (character uplo, integer n, complex, dimension( * ) ap, integer, dimension( * ) ipiv, complex, dimension( * ) work, integer info)

CSPTRI  

Purpose:

 CSPTRI computes the inverse of a complex symmetric indefinite matrix
 A in packed storage using the factorization A = U*D*U**T or
 A = L*D*L**T computed by CSPTRF.
Parameters

UPLO

          UPLO is CHARACTER*1
          Specifies whether the details of the factorization are stored
          as an upper or lower triangular matrix.
          = 'U':  Upper triangular, form is A = U*D*U**T;
          = 'L':  Lower triangular, form is A = L*D*L**T.

N

          N is INTEGER
          The order of the matrix A.  N >= 0.

AP

          AP is COMPLEX array, dimension (N*(N+1)/2)
          On entry, the block diagonal matrix D and the multipliers
          used to obtain the factor U or L as computed by CSPTRF,
          stored as a packed triangular matrix.

          On exit, if INFO = 0, the (symmetric) inverse of the original
          matrix, stored as a packed triangular matrix. The j-th column
          of inv(A) is stored in the array AP as follows:
          if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j;
          if UPLO = 'L',
             AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n.

IPIV

          IPIV is INTEGER array, dimension (N)
          Details of the interchanges and the block structure of D
          as determined by CSPTRF.

WORK

          WORK is COMPLEX array, dimension (N)

INFO

          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
          > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
               inverse could not be computed.
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 108 of file csptri.f.

subroutine dsptri (character uplo, integer n, double precision, dimension( * ) ap, integer, dimension( * ) ipiv, double precision, dimension( * ) work, integer info)

DSPTRI  

Purpose:

 DSPTRI computes the inverse of a real symmetric indefinite matrix
 A in packed storage using the factorization A = U*D*U**T or
 A = L*D*L**T computed by DSPTRF.
Parameters

UPLO

          UPLO is CHARACTER*1
          Specifies whether the details of the factorization are stored
          as an upper or lower triangular matrix.
          = 'U':  Upper triangular, form is A = U*D*U**T;
          = 'L':  Lower triangular, form is A = L*D*L**T.

N

          N is INTEGER
          The order of the matrix A.  N >= 0.

AP

          AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
          On entry, the block diagonal matrix D and the multipliers
          used to obtain the factor U or L as computed by DSPTRF,
          stored as a packed triangular matrix.

          On exit, if INFO = 0, the (symmetric) inverse of the original
          matrix, stored as a packed triangular matrix. The j-th column
          of inv(A) is stored in the array AP as follows:
          if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j;
          if UPLO = 'L',
             AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n.

IPIV

          IPIV is INTEGER array, dimension (N)
          Details of the interchanges and the block structure of D
          as determined by DSPTRF.

WORK

          WORK is DOUBLE PRECISION array, dimension (N)

INFO

          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
          > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
               inverse could not be computed.
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 108 of file dsptri.f.

subroutine ssptri (character uplo, integer n, real, dimension( * ) ap, integer, dimension( * ) ipiv, real, dimension( * ) work, integer info)

SSPTRI  

Purpose:

 SSPTRI computes the inverse of a real symmetric indefinite matrix
 A in packed storage using the factorization A = U*D*U**T or
 A = L*D*L**T computed by SSPTRF.
Parameters

UPLO

          UPLO is CHARACTER*1
          Specifies whether the details of the factorization are stored
          as an upper or lower triangular matrix.
          = 'U':  Upper triangular, form is A = U*D*U**T;
          = 'L':  Lower triangular, form is A = L*D*L**T.

N

          N is INTEGER
          The order of the matrix A.  N >= 0.

AP

          AP is REAL array, dimension (N*(N+1)/2)
          On entry, the block diagonal matrix D and the multipliers
          used to obtain the factor U or L as computed by SSPTRF,
          stored as a packed triangular matrix.

          On exit, if INFO = 0, the (symmetric) inverse of the original
          matrix, stored as a packed triangular matrix. The j-th column
          of inv(A) is stored in the array AP as follows:
          if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j;
          if UPLO = 'L',
             AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n.

IPIV

          IPIV is INTEGER array, dimension (N)
          Details of the interchanges and the block structure of D
          as determined by SSPTRF.

WORK

          WORK is REAL array, dimension (N)

INFO

          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
          > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
               inverse could not be computed.
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 108 of file ssptri.f.

subroutine zhptri (character uplo, integer n, complex*16, dimension( * ) ap, integer, dimension( * ) ipiv, complex*16, dimension( * ) work, integer info)

ZHPTRI  

Purpose:

 ZHPTRI computes the inverse of a complex Hermitian indefinite matrix
 A in packed storage using the factorization A = U*D*U**H or
 A = L*D*L**H computed by ZHPTRF.
Parameters

UPLO

          UPLO is CHARACTER*1
          Specifies whether the details of the factorization are stored
          as an upper or lower triangular matrix.
          = 'U':  Upper triangular, form is A = U*D*U**H;
          = 'L':  Lower triangular, form is A = L*D*L**H.

N

          N is INTEGER
          The order of the matrix A.  N >= 0.

AP

          AP is COMPLEX*16 array, dimension (N*(N+1)/2)
          On entry, the block diagonal matrix D and the multipliers
          used to obtain the factor U or L as computed by ZHPTRF,
          stored as a packed triangular matrix.

          On exit, if INFO = 0, the (Hermitian) inverse of the original
          matrix, stored as a packed triangular matrix. The j-th column
          of inv(A) is stored in the array AP as follows:
          if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j;
          if UPLO = 'L',
             AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n.

IPIV

          IPIV is INTEGER array, dimension (N)
          Details of the interchanges and the block structure of D
          as determined by ZHPTRF.

WORK

          WORK is COMPLEX*16 array, dimension (N)

INFO

          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
          > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
               inverse could not be computed.
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 108 of file zhptri.f.

subroutine zsptri (character uplo, integer n, complex*16, dimension( * ) ap, integer, dimension( * ) ipiv, complex*16, dimension( * ) work, integer info)

ZSPTRI  

Purpose:

 ZSPTRI computes the inverse of a complex symmetric indefinite matrix
 A in packed storage using the factorization A = U*D*U**T or
 A = L*D*L**T computed by ZSPTRF.
Parameters

UPLO

          UPLO is CHARACTER*1
          Specifies whether the details of the factorization are stored
          as an upper or lower triangular matrix.
          = 'U':  Upper triangular, form is A = U*D*U**T;
          = 'L':  Lower triangular, form is A = L*D*L**T.

N

          N is INTEGER
          The order of the matrix A.  N >= 0.

AP

          AP is COMPLEX*16 array, dimension (N*(N+1)/2)
          On entry, the block diagonal matrix D and the multipliers
          used to obtain the factor U or L as computed by ZSPTRF,
          stored as a packed triangular matrix.

          On exit, if INFO = 0, the (symmetric) inverse of the original
          matrix, stored as a packed triangular matrix. The j-th column
          of inv(A) is stored in the array AP as follows:
          if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j;
          if UPLO = 'L',
             AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n.

IPIV

          IPIV is INTEGER array, dimension (N)
          Details of the interchanges and the block structure of D
          as determined by ZSPTRF.

WORK

          WORK is COMPLEX*16 array, dimension (N)

INFO

          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
          > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
               inverse could not be computed.
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 108 of file zsptri.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Info

Tue Nov 28 2023 12:08:43 Version 3.12.0 LAPACK