Sponsor:

Your company here, and a link to your site. Click to find out more.

hetri - Man Page

{he,sy}tri: triangular inverse

Synopsis

Functions

subroutine chetri (uplo, n, a, lda, ipiv, work, info)
CHETRI
subroutine csytri (uplo, n, a, lda, ipiv, work, info)
CSYTRI
subroutine dsytri (uplo, n, a, lda, ipiv, work, info)
DSYTRI
subroutine ssytri (uplo, n, a, lda, ipiv, work, info)
SSYTRI
subroutine zhetri (uplo, n, a, lda, ipiv, work, info)
ZHETRI
subroutine zsytri (uplo, n, a, lda, ipiv, work, info)
ZSYTRI

Detailed Description

Function Documentation

subroutine chetri (character uplo, integer n, complex, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, complex, dimension( * ) work, integer info)

CHETRI  

Purpose:

 CHETRI computes the inverse of a complex Hermitian indefinite matrix
 A using the factorization A = U*D*U**H or A = L*D*L**H computed by
 CHETRF.
Parameters

UPLO

          UPLO is CHARACTER*1
          Specifies whether the details of the factorization are stored
          as an upper or lower triangular matrix.
          = 'U':  Upper triangular, form is A = U*D*U**H;
          = 'L':  Lower triangular, form is A = L*D*L**H.

N

          N is INTEGER
          The order of the matrix A.  N >= 0.

A

          A is COMPLEX array, dimension (LDA,N)
          On entry, the block diagonal matrix D and the multipliers
          used to obtain the factor U or L as computed by CHETRF.

          On exit, if INFO = 0, the (Hermitian) inverse of the original
          matrix.  If UPLO = 'U', the upper triangular part of the
          inverse is formed and the part of A below the diagonal is not
          referenced; if UPLO = 'L' the lower triangular part of the
          inverse is formed and the part of A above the diagonal is
          not referenced.

LDA

          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).

IPIV

          IPIV is INTEGER array, dimension (N)
          Details of the interchanges and the block structure of D
          as determined by CHETRF.

WORK

          WORK is COMPLEX array, dimension (N)

INFO

          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
          > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
               inverse could not be computed.
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 113 of file chetri.f.

subroutine csytri (character uplo, integer n, complex, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, complex, dimension( * ) work, integer info)

CSYTRI  

Purpose:

 CSYTRI computes the inverse of a complex symmetric indefinite matrix
 A using the factorization A = U*D*U**T or A = L*D*L**T computed by
 CSYTRF.
Parameters

UPLO

          UPLO is CHARACTER*1
          Specifies whether the details of the factorization are stored
          as an upper or lower triangular matrix.
          = 'U':  Upper triangular, form is A = U*D*U**T;
          = 'L':  Lower triangular, form is A = L*D*L**T.

N

          N is INTEGER
          The order of the matrix A.  N >= 0.

A

          A is COMPLEX array, dimension (LDA,N)
          On entry, the block diagonal matrix D and the multipliers
          used to obtain the factor U or L as computed by CSYTRF.

          On exit, if INFO = 0, the (symmetric) inverse of the original
          matrix.  If UPLO = 'U', the upper triangular part of the
          inverse is formed and the part of A below the diagonal is not
          referenced; if UPLO = 'L' the lower triangular part of the
          inverse is formed and the part of A above the diagonal is
          not referenced.

LDA

          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).

IPIV

          IPIV is INTEGER array, dimension (N)
          Details of the interchanges and the block structure of D
          as determined by CSYTRF.

WORK

          WORK is COMPLEX array, dimension (2*N)

INFO

          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
          > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
               inverse could not be computed.
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 113 of file csytri.f.

subroutine dsytri (character uplo, integer n, double precision, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, double precision, dimension( * ) work, integer info)

DSYTRI  

Purpose:

 DSYTRI computes the inverse of a real symmetric indefinite matrix
 A using the factorization A = U*D*U**T or A = L*D*L**T computed by
 DSYTRF.
Parameters

UPLO

          UPLO is CHARACTER*1
          Specifies whether the details of the factorization are stored
          as an upper or lower triangular matrix.
          = 'U':  Upper triangular, form is A = U*D*U**T;
          = 'L':  Lower triangular, form is A = L*D*L**T.

N

          N is INTEGER
          The order of the matrix A.  N >= 0.

A

          A is DOUBLE PRECISION array, dimension (LDA,N)
          On entry, the block diagonal matrix D and the multipliers
          used to obtain the factor U or L as computed by DSYTRF.

          On exit, if INFO = 0, the (symmetric) inverse of the original
          matrix.  If UPLO = 'U', the upper triangular part of the
          inverse is formed and the part of A below the diagonal is not
          referenced; if UPLO = 'L' the lower triangular part of the
          inverse is formed and the part of A above the diagonal is
          not referenced.

LDA

          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).

IPIV

          IPIV is INTEGER array, dimension (N)
          Details of the interchanges and the block structure of D
          as determined by DSYTRF.

WORK

          WORK is DOUBLE PRECISION array, dimension (N)

INFO

          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
          > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
               inverse could not be computed.
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 113 of file dsytri.f.

subroutine ssytri (character uplo, integer n, real, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, real, dimension( * ) work, integer info)

SSYTRI  

Purpose:

 SSYTRI computes the inverse of a real symmetric indefinite matrix
 A using the factorization A = U*D*U**T or A = L*D*L**T computed by
 SSYTRF.
Parameters

UPLO

          UPLO is CHARACTER*1
          Specifies whether the details of the factorization are stored
          as an upper or lower triangular matrix.
          = 'U':  Upper triangular, form is A = U*D*U**T;
          = 'L':  Lower triangular, form is A = L*D*L**T.

N

          N is INTEGER
          The order of the matrix A.  N >= 0.

A

          A is REAL array, dimension (LDA,N)
          On entry, the block diagonal matrix D and the multipliers
          used to obtain the factor U or L as computed by SSYTRF.

          On exit, if INFO = 0, the (symmetric) inverse of the original
          matrix.  If UPLO = 'U', the upper triangular part of the
          inverse is formed and the part of A below the diagonal is not
          referenced; if UPLO = 'L' the lower triangular part of the
          inverse is formed and the part of A above the diagonal is
          not referenced.

LDA

          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).

IPIV

          IPIV is INTEGER array, dimension (N)
          Details of the interchanges and the block structure of D
          as determined by SSYTRF.

WORK

          WORK is REAL array, dimension (N)

INFO

          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
          > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
               inverse could not be computed.
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 113 of file ssytri.f.

subroutine zhetri (character uplo, integer n, complex*16, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, complex*16, dimension( * ) work, integer info)

ZHETRI  

Purpose:

 ZHETRI computes the inverse of a complex Hermitian indefinite matrix
 A using the factorization A = U*D*U**H or A = L*D*L**H computed by
 ZHETRF.
Parameters

UPLO

          UPLO is CHARACTER*1
          Specifies whether the details of the factorization are stored
          as an upper or lower triangular matrix.
          = 'U':  Upper triangular, form is A = U*D*U**H;
          = 'L':  Lower triangular, form is A = L*D*L**H.

N

          N is INTEGER
          The order of the matrix A.  N >= 0.

A

          A is COMPLEX*16 array, dimension (LDA,N)
          On entry, the block diagonal matrix D and the multipliers
          used to obtain the factor U or L as computed by ZHETRF.

          On exit, if INFO = 0, the (Hermitian) inverse of the original
          matrix.  If UPLO = 'U', the upper triangular part of the
          inverse is formed and the part of A below the diagonal is not
          referenced; if UPLO = 'L' the lower triangular part of the
          inverse is formed and the part of A above the diagonal is
          not referenced.

LDA

          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).

IPIV

          IPIV is INTEGER array, dimension (N)
          Details of the interchanges and the block structure of D
          as determined by ZHETRF.

WORK

          WORK is COMPLEX*16 array, dimension (N)

INFO

          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
          > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
               inverse could not be computed.
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 113 of file zhetri.f.

subroutine zsytri (character uplo, integer n, complex*16, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, complex*16, dimension( * ) work, integer info)

ZSYTRI  

Purpose:

 ZSYTRI computes the inverse of a complex symmetric indefinite matrix
 A using the factorization A = U*D*U**T or A = L*D*L**T computed by
 ZSYTRF.
Parameters

UPLO

          UPLO is CHARACTER*1
          Specifies whether the details of the factorization are stored
          as an upper or lower triangular matrix.
          = 'U':  Upper triangular, form is A = U*D*U**T;
          = 'L':  Lower triangular, form is A = L*D*L**T.

N

          N is INTEGER
          The order of the matrix A.  N >= 0.

A

          A is COMPLEX*16 array, dimension (LDA,N)
          On entry, the block diagonal matrix D and the multipliers
          used to obtain the factor U or L as computed by ZSYTRF.

          On exit, if INFO = 0, the (symmetric) inverse of the original
          matrix.  If UPLO = 'U', the upper triangular part of the
          inverse is formed and the part of A below the diagonal is not
          referenced; if UPLO = 'L' the lower triangular part of the
          inverse is formed and the part of A above the diagonal is
          not referenced.

LDA

          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).

IPIV

          IPIV is INTEGER array, dimension (N)
          Details of the interchanges and the block structure of D
          as determined by ZSYTRF.

WORK

          WORK is COMPLEX*16 array, dimension (2*N)

INFO

          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
          > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
               inverse could not be computed.
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 113 of file zsytri.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Info

Tue Nov 28 2023 12:08:43 Version 3.12.0 LAPACK